Induction and Union of Sets

discrete mathematicsinductionproof-writingsolution-verification

I'm trying to prove the following:

" Suppose that one has proven the proposition that if $A \subseteq B$ and $C \subseteq D$, then $A \cup C \subseteq B \subseteq D$. Prove that for any integer $n \geq 2$ that if sets $A_1, A_2,…,A_n$ and $B_1, B_2,…B_n$ are sets that satisfy $A_j \subseteq B_j$ for $j = 1, 2, …, n$ then $$\bigcup_{j=1}^n A_j\subseteq \bigcup_{j=1}^n B_j."$$

I'm not sure if I what I came up with makes sense logically, and would appreciate some feedback.

Proof:

Define P(n): $\bigcup_{j=1}^n A_j\subseteq \bigcup_{j=1}^n B_j$.

Base case $(n=2)$:

$\bigcup_{j=1}^2 A_j \subseteq \bigcup_{j=1}^2 B_j = A_1 \bigcup A_2 \subseteq B_1 \bigcup B_2$. So $P(2)$ holds.

Inductive step: Assume $P(k)$ holds for some $k \geq 2$. So $$\bigcup_{j=1}^k A_j \subseteq \bigcup_{j=1}^k B_j = A_1 \bigcup A_2 \bigcup … \bigcup A_k \subseteq B_1 \bigcup B_2 \bigcup …\bigcup B_k.$$ Notice, $$\bigcup_{j=1}^{k+1} A_j \subseteq \bigcup_{j=1}^{k+1} B_j = A_1 \bigcup A_2 \bigcup … \bigcup A_k \bigcup A_{k+1} \subseteq B_1 \bigcup B_2 \bigcup … \bigcup B_k \bigcup B_{k+1}.$$ So $P(k+1)$ holds and by induction $P(n)$ holds for all $n \geq 2$.

Best Answer

Thanks for your question.

I will continue from inductive step.

Inductive step: Assume $P(k)$, then we want to show it holds for the inductive step $P(k+1)$:

$$\bigcup_{j=1}^{k+1} A_j \subseteq \bigcup_{j=1}^{k+1} B_j = \left(A_1 \bigcup A_2 \bigcup ... \bigcup A_k\right) \bigcup A_{k+1} \subseteq \left( B_1 \bigcup B_2 \bigcup ... \bigcup B_k\right) \bigcup B_{k+1}.$$

You can then consider the two paraenthsized groups as one group and thus you can consider them as 2 elements similar to how you did with base case, which will give you final result.

Please let me know if anything is not clear.

Related Question