Inconsistency of limits

bessel functionslimitsspecial functionswolfram alpha

Let $I_n(x)$ and $L_n(x)$ be the modified Bessel and modified Struve functions of order $n$, respectively. Assuming $x$ is real, I am interested in the following limit:
$$ \lim_{x\to\infty} \frac{I_0(x)L_1(x) – I_1(x)L_0(x)}{x^2I_2(x)}. $$
Let's call the function $G(x)/x^2$. Now, using Wolfram Alpha I find that
$$ \lim_{x\to\infty} G(x) = \lim_{x\to\infty} \frac{I_0(x)L_1(x) – I_1(x)L_0(x)}{I_2(x)} = -\frac{2}{\pi}. $$
So it seems like
$$ \lim_{x\to\infty} \frac{I_0(x)L_1(x) – I_1(x)L_0(x)}{x^2I_2(x)} = \lim_{x\to\infty} \frac{G(x)}{x^2} = \left(\lim_{x\to\infty} G(x)\right)\left(\lim_{x\to\infty} \frac{1}{x^2}\right) = 0 $$
On the other hand, Wolfram Alpha gives me
$$ \lim_{x\to\infty} \frac{G(x)}{x^2} = -\infty. $$
What went wrong?

Best Answer

Ok, I managed to show (using squeeze theorem) that $\displaystyle\lim_{x\to\infty} G(x)/x^2 = 0$. Nonetheless I am still interested in knowing why Wolfram Alpha is giving me the wrong limit.

Related Question