In the limit $\lambda \to \infty $ approximate the integral $I(\lambda )=\int_{-\infty }^{\infty }e^{-x^2}(\cosh x)^{\lambda }dx$

approximate integrationapproximationcalculusintegrationreal-analysis

With the help of the previous answer (here) I decided to do the same with this integral

In the limit $\lambda \to \infty $ approximate the integral
$$I(\lambda )=\int_{-\infty }^{\infty }e^{-x^2}(\cosh x)^{\lambda }dx$$

My attempt:

Substitute $\cosh x = e^{x} + e^{-x}$
$$I(\lambda )=\int_{-\infty }^{\infty }e^{-x^2}\left(e^{x} + e^{-x}\right)^{\lambda }dx=\int_{-\infty }^{\infty }e^{-x^2}e^{\lambda x}dx + \int_{-\infty }^{\infty }e^{-x^2}e^{-\lambda x}dx$$

$$I(\lambda )=\int_{-\infty }^{\infty }e^{-x^2}(\cosh x)^{\lambda }dx \approx 2\sqrt{\frac{\pi}{\lambda}}e^{\lambda}, \quad \lambda \rightarrow \infty$$

Did I apply this method correctly? Did I find the correct approximate value?

Best Answer

We have

\begin{align*} I(\lambda) &= 2 \int_{0}^{\infty} e^{-x^2}(\cosh x)^{\lambda} \, \mathrm{d}x \\ &= 2^{1-\lambda} \int_{0}^{\infty} e^{-x^2+\lambda x}(1 + e^{-2x})^{\lambda} \, \mathrm{d}x \\ &= e^{\lambda^2/4} 2^{1-\lambda} \int_{-\lambda/2}^{\infty} e^{-y^2}(1 + e^{-2y-\lambda})^{\lambda} \, \mathrm{d}y. \end{align*}

Using this and invoking dominated convergence theorem, it is easy to check that

$$ I(\lambda) \sim e^{\lambda^2/4}2^{1-\lambda}\sqrt{\pi} $$

as $\lambda \to \infty$. Furthermore, it is possible to show that the relative error of this asymptotic formula,

$$ \left| \frac{I(\lambda)}{e^{\lambda/4}2^{1-\lambda}\sqrt{\pi}} - 1 \right|, $$

decays exponentially fast as $\lambda \to \infty$:

Plot of relative error

Related Question