In $M_n(\mathbb{C})$, does $ad_A$ semisimple imply $A$ semisimple

abstract-algebralie-algebraslinear algebra

In $M_n(\mathbb{C})$, define $ad_A$ is the operator $ad_A(X)=AX-XA$ in $\mathcal{L}(M_n(\mathbb{C}))$.

Does $ad_A$ semisimple imply $A$ semisimple?

Here 'semisimple' means that 'diagonalizable'.

(It has been proven that $A$ semisimple implies $ad_A$ semisimple, and if $\lambda_1,\cdots,\lambda_n$ are eigenvalues of $A$, then $\lambda_i-\lambda_j$'s are the eigenvalues of $ad_A$.)

Thanks.

Best Answer

Yes, the implication is true. Suppose the contrary that $A$ has a non-semisimple eigenvalue $\lambda$. Then there exist two linearly independent sets of generalised eigenvectors $\{u_1,u_2\}$ and $\{v_1,v_2\}$ such that $$ (A-\lambda I)u_1=0,\ (A-\lambda I)u_2=u_1,\ v_1^T(A-\lambda I)=0\ \text{ and }\ v_2^T(A-\lambda I)=v_1^T. $$ Let $X=u_2v_2^T$. Then $\operatorname{ad}_A(X)\ne0$ but $\operatorname{ad}_A^3(X)=0$. Hence $\operatorname{ad}_A$ is not diagonalisable.

Related Question