In a reflexive Banach space, weak and weak* convergences are equivalent

convergence-divergencefunctional-analysisreflexive-space

Let $X$ be are flexive Banach Space. Then weak and weak* convergences are equivalent.

Let $(f_n) \subset X'$, $f\in X'$ and $$f_n \xrightarrow{w}f,$$ then $$f_n \rightarrow{w*} f.$$ I'm trying to show that the convergence of $(f_n)$ to $f$ in a weak* topology implies a convergence in a weak topology.

I've tried this:

Let $g \in X''$. X is reflexive so $X'' = X $. Then $(g(f_n)) \subset X$ is Cauchy. Since $X$ is Banach space, $(g(f_n))$ converges.

But I wasn't able to show that $g(f_n)\rightarrow g(f)$.

Best Answer

If $X$ is reflexsive $X''=X$ that means $\forall x \in X \Rightarrow x\in X''$.Also $f_n \rightarrow^{w*} f$ then $\forall x \in X$ ; $f_n(x)\rightarrow f(x)$.$X$ reflexsive then $x:X' \rightarrow \Bbb{F}$ $\forall h\in X'$ ; $h(x)=x(h)$ is a linear functional$X''$. Hence $\forall x\in X''$; $x(f_n) \rightarrow x(f) $ because we known $x(f_n)=f_n(x)\rightarrow x(f)=f(x)$ so that says $(f_n)$weak convargence $f$