Improper integral $\int_{0}^{\infty}\left(\frac{1}{\sqrt{x^2+4}}-\frac{k}{x+2}\right)\text dx$

improper-integralsintegration

Given improper integral $$\int \limits_{0}^{\infty}\left(\frac{1}{\sqrt{x^2+4}}-\frac{k}{x+2}\right)\text dx \, ,$$
there exists $k$ that makes this integral convergent.
Find its integration value.

Choices are $\ln 2$, $\ln 3$, $\ln 4$, and $\ln 5$.


I've written every information from the problem.
Yet I'm not sure whether I should find the integration value from the given integral or $k$.

What I've tried so far is,
$\int_{0}^{\infty} \frac{1}{\sqrt{x^2+4}} \, \text dx= \left[\sinh^{-1}{\frac{x}{2}}\right]_{0}^{\infty}$

How should I proceed?

Best Answer

As shown in gimusi's answer, you do not need to compute the integral.

However, if you want to integrate, consider $$I=\int_{0}^{p}\left(\frac{1}{\sqrt{x^2+4}}-\frac{k}{x+2}\right)\,\text dx=\sinh ^{-1}\left(\frac{p}{2}\right)-k \log (p+2)+k \log (2)$$ and use series expansion for large $p$. This should give $$I=(1-k) \log \left({p}\right)+k \log (2)-\frac{2 k}{p}+\frac{2 k+1}{p^2}+O\left(\frac{1}{p^3}\right)$$ and look at the limit when $p\to \infty$.

Related Question