If $z=\cos \theta + i \sin \theta$, express $\displaystyle \frac {1}{1-z \cos \theta}$ in the form $a+i\cdot b$.

complex numbers

In order to get rid of the $z$, should I substitute $z=\cos\theta + i\sin \theta$ into the complex number, or what conjugate should I multiply the complex number by?

I have tried substituting $z=\cos\theta + i\sin \theta$ into the complex number, but only got this far:

$\displaystyle \frac {1}{1-z \cos \theta}$

$= \displaystyle\frac{1}{1-(\cos\theta + i\sin\theta)(\cos\theta)}$

$=\displaystyle\frac{1}{1-\cos^2\theta-i\cos\theta\sin\theta}$

As for multiplying the complex number by a conjugate, I have used $\big(\displaystyle\frac {1}{z}-\frac{1}{\cos\theta}\big)$, $\big(\displaystyle z-\frac{1}{z}\big)$ and $(1+z\cos\theta)$ but to no avail.

I have only learnt de Moivre's theorem, and I haven't learnt $\cosθ+i\sinθ=e^{iθ}$, so I would appreciate if this question can be solved in the simplest way possible. But other methods are welcome.

Best Answer

$$\dfrac1{1-\cos\theta(\cos\theta+i\sin\theta)}=\dfrac1{\sin^2\theta-i\sin\theta\cos\theta}=\dfrac1{-i\sin\theta}\cdot\dfrac1{\cos\theta+i\sin\theta}=\dfrac{\cos\theta-i\sin\theta}{-i\sin\theta}$$