If $Y\sim\operatorname{Beta}(a,1-a)$ and $Z\sim\operatorname{Exp}(1)$, then $YZ\sim\operatorname{Gamma}(0,1)$

density functiongamma distributionprobability distributions

I have two random variables

$Y \sim \operatorname{Beta}(a, 1 – a)$

$Z \sim \operatorname{Exp}(1)$

If $Y$ and $Z$ are independent, why is the distribution of $X = YZ \sim \operatorname{Gamma}(a, 1)$?

$f_X(x) = \int_0^\infty|\frac{1}{y}|f_Y(y)f_Z(\frac xy)dy$

$f_X(x) = \int_0^\infty \frac{1}{y}\frac{1}{\Gamma(\alpha)\Gamma(1-\alpha)}y^{\alpha-1}(1-y)^{-\alpha}e^{-\frac{x}{y}}dy$

but I can't derive more than it.

How can I proof $YZ \sim \operatorname{Gamma}(a, 1)$ ?

Best Answer

Use the following result:

Assuming $Y$ and $Z$ are independent, the PDF of $X = YZ$ is given by:

$$f_X(x) = \int_{-\infty}^{\infty} \frac{1}{|u|} f_{Y}(u) f_Z\left(\frac{x}{u}\right) du$$