If the underlying metric space is separable, then weak convergence is equivalent to convergence in Prokhorov metric

borel-measuresfunctional-analysismetric-spacesweak-convergence

I'm rewriting the proof that weak convergence is equivalent to convergence in Prokhorov metric in separable metric space. Could you verify if my attempt is fine?


Let $(X, d)$ be a metric space and $\mathcal{M} :=\mathcal{M}(X)$ the set all non-negative finite Borel measures on $X$. Let $d_P$ be the Prokhorov metric on $\mathcal{M}$. The weak convergence on $\mathcal{M}$ is the convergence w.r.t. the space $\mathcal C_b(X)$ of all bounded continuous functionals on $X$.

Theorem: If $X$ is separable, then weak convergence implies convergence in $d_P$.


I post my proof separately as below answer. This allows me to subsequently remove this question from unanswered list.

Best Answer

  • Lemma 1: Let $\mu, \mu_1, \mu_2,\ldots \in \mathcal{M}$ and $g \in \mathcal C_b(X)$. If $\mu_i \to \mu$ weakly, then $\mu_i(A) \to \mu(A)$ for all Borel set $A \subseteq X$ with $\mu(\partial A) = 0$.

  • Lemma 2: If $X$ is separable and $\mu \in \mathcal{M}$. Then for each $\delta>0$ there are countably many open (or closed) balls $B_{1}, B_{2}, \ldots$ such that $\bigcup_{i=1}^{\infty} B_{i}=X$, the radius of $B_{i}$ is less than $\delta$, and $\mu\left(\partial B_{i}\right)=0$ for all $i$.

Fix $\varepsilon>0$. We want to show that $\exists N, \forall i \geq N: d_{P}\left(\mu_{i}, \mu\right) \leq \varepsilon$, i.e., $\mu_{i}(B) \leq \mu\left(B_{\varepsilon}\right)+\varepsilon$ and $\mu(B) \leq \mu_{i}\left(B_{\varepsilon}\right)+\varepsilon$ for all Borel subset $B$.

Fix $\delta \in (0, \varepsilon/4)$. By Lemma 2, there are countably many open balls $B_{1}, B_{2}, \ldots$ with radius less than $\delta/2$ such that $\bigcup_{i=1}^{\infty} B_{i}=X$ and $\mu\left(\partial B_{i}\right)=0$ for all $i$. Fix $k$ such that $$ \mu\left(\bigcup_{j=1}^{k} B_{j}\right) \ge \mu(X)-\delta. $$

Let $\mathcal A$ be the finite collection of subsets built by combining the balls $B_1, \ldots, B_k$, i.e., $$ \mathcal{A}:=\left\{\bigcup_{j \in I} B_{j} \,\middle\vert\, J \subset \{1, \ldots, k\}\right\}. $$

We will use this collection to approximate any Borel set. For each $A \in \mathcal{A}, \partial A \subset \partial B_{1} \cup \cdots \cup \partial B_{k}$, so $\mu(\partial A) \leq$ $\mu\left(\partial B_{1}\right)+\cdots+\mu\left(\partial B_{k}\right)=0$. By Lemma 1, $\mu_{i}(A) \rightarrow \mu(A)$ for all $A \in \mathcal{A}$. Fix $N$ such that $$ \left|\mu_{i}(A)-\mu(A)\right|<\delta \quad \forall i \geq N, \forall A \in \mathcal{A}. $$

In particular, $$ \mu_i \left(\bigcup_{j=1}^{k} B_{j}\right) \ge \mu \left(\bigcup_{j=1}^{k} B_{j}\right) -\delta \ge \mu(X) - 2 \delta \quad \forall i \ge N. $$

Now we fix a Borel set $B$ and approximate it by $$ A := \bigcup \{B_j \mid j = 1,\ldots,k \text{ such that } B_j \cap B \neq \emptyset\}. $$

Then

  • $A \subset B_{\delta} := \{x \mid d(x, B)<\delta\}$ because $\operatorname{diam} B_{j}<\delta$,
  • $B=\left[B \cap \bigcup_{j=1}^{k} B_{j}\right] \cup\left[B \cap\left(\bigcup_{j=1}^{k} B_{j}\right)^{c}\right] \subset \left [ A \cup\left(\bigcup_{j=1}^{k} B_{j}\right)^{c} \right ]$,
  • $\left|\mu_{i}(A)-\mu(A)\right|<\delta$ for all $i \geq N$, and
  • $\mu\left(\left(\bigcup_{j=1}^{k} B_{j}\right)^{c}\right) \leq \delta$ and $\mu_{i}\left(\left(\bigcup_{j=1}^{k} B_{j}\right)^{c}\right) \leq \mu_i(X)-\mu(X)+ 2 \delta \le \mu_i(X) + 3\delta$ for all $i \geq N$.

It follows that for every $i \geq N$ : \begin{aligned} \mu(B) & \leq \mu(A)+\mu\left(\left(\bigcup_{j=1}^{k} B_{j}\right)^{c}\right) \\ & \leq \mu(A)+\delta \\ & \leq \mu_{i}(A)+2 \delta \\ & \leq \mu_{i}\left(B_{\delta}\right)+2 \delta \\ &\leq \mu_{i}\left(B_{\varepsilon}\right)+\varepsilon \\ \mu_{i}(B) & \leq \mu_{i}(A)+\mu_{i}\left(\left(\bigcup_{j=1}^{k} B_{j}\right)^{c}\right) \\ &\leq \mu_{i}(A)+ 3 \delta \\ &\leq \mu(A)+4 \delta \\ & \leq \mu\left(B_{\delta}\right)+4 \delta \\ &\leq \mu\left(B_{\varepsilon}\right)+\varepsilon. \end{aligned}

This is true for every $B \in \mathcal{B}$, so $d_{P}\left(\mu_{i}, \mu\right) \leq \varepsilon$ for all $i \geq N$.