If $\sin\theta-\cos\theta\leq\mu (\cos\theta + \sin\theta)$, then $\tan\theta \leq \frac{1+\mu}{1-\mu}$

trigonometry

In a text I'm reading, an implication is made:

$$\sin\theta-\cos\theta\leq\mu (\cos\theta + \sin\theta) \quad\implies\quad \tan\theta \leq \frac{1+\mu}{1-\mu}$$

I tried using some trigonometric identities to reproduce this result, but it seems I'm not familiar enough with them.

How was this implication made?

Best Answer

$$\mu\ge\dfrac{\sin\theta-\cos\theta}{\sin\theta+\cos\theta}$$

$$1+\mu\ge\dfrac{2\sin\theta}{\sin\theta+\cos\theta}$$

$$1-\mu\le\dfrac{2\cos\theta}{\sin\theta+\cos\theta}$$

$$\dfrac{1+\mu}{1-\mu}\ge \tan\theta$$