If $\inf\limits_{n \in \mathbb{N}^*} \frac{x_n}{n}=-\infty$, why $\lim _{n\to \infty }\tfrac{x_n}{n}=-\infty ?$

real-analysis

It is well known that:

If $(x_n)_n$ is a subadditive sequence (i.e. $x_{{n+m}}\leq x_{n}+x_{m}$ for all $n,m$). Then, $\displaystyle\lim _{n\to \infty }\tfrac{x_n}{n}$ exists (may be $-\infty$).

I see a proof of the above result and I understand the following case: If $ \inf\limits_{n \in \mathbb{N}^*} \frac{x_n}{n}> -\infty$ then $\displaystyle\lim _{n\to \infty }\tfrac{x_n}{n}$ exists and $$\lim _{n\to \infty }\tfrac{x_n}{n}=\inf_{n\in \mathbb{N}^*}\tfrac{x_n}{n}.
$$

This is the proof:

enter image description here

My problem is: if $ \inf\limits_{n \in \mathbb{N}^*} \frac{x_n}{n}= -\infty$ why $$\lim _{n\to \infty }\tfrac{x_n}{n}=-\infty ?
$$

Best Answer

Original Answer: Since $\inf_{n\in\mathbb{N}} n^{-1}x_n=-\infty$, there exists a sequence $n_j\to\infty$ such that $\frac1{n_j}x_{n_j}<-j$. Taking $j\to\infty$ gives $\lim_{j\to\infty}\frac1{n_j}x_{n_j}=-\infty$. Since $\lim_{n\to\infty}\frac1nx_n$ exists (in the extended reals) $$ -\infty=\lim_{j\to\infty}\frac{x_{n_j}}{n_j}=\lim_{n\to\infty}\frac{x_n}{n} $$ where the final equality follows from $\frac1{n_j}x_{n_j}$ being a subsequence of $\frac1nx_n$.


Modifed Anaswer: To prove that $\lim_{n\to\infty}\frac1n x_n$ exists, for every $m,n\in\mathbb{N}$ with $n>m>0$ we get $n=mq+r$, some $0\leq r<n$, so subadditivity gives $$ a_n\leq qa_m+a_r $$ and hence $$ \frac{a_n}{n}\leq \frac{q}{mq+r} a_m+\frac1{mq+r} a_r. $$ Taking limit superior as $n\to\infty$ gives $$ \limsup_{n\to\infty}\frac{a_n}n \leq\limsup_{q\to\infty}\max_{r=0,1,\dots,m-1}\left[\frac{q}{mq+r} a_m+\frac1{mq+r} a_r\right]=\frac{a_m}m $$ So we can take inf over $m$, $$ \limsup_{n\to\infty}\frac{a_n}n \leq\inf_m\frac{a_m}m $$ and so in this case we conclude $\limsup_n \frac1n a_n=-\infty$ and so also $\liminf_n\frac1n a_n=-\infty$.

Related Question