If $\gcd(a,b)+\operatorname{lcm}(a,b)=\gcd(a,c)+\operatorname{lcm}(a,c)$, then are b and c equal

algebra-precalculuselementary-number-theory

Is it true that, if $\gcd(a,b)+\operatorname{lcm}(a,b)=\gcd(a,c)+\operatorname{lcm}(a,c)$, then are $b$ and $c$ equal?

For coprime $(a,b)$ and $(a,c)$, it is trivial. It is also easy when $a|b$ and $a|c$. I am unable to construct counterexamples. I tried to use the property that $\gcd(a,b)\cdot \operatorname{lcm}(a,b)=ab$, but to no avail. Any hints? Thanks beforehand.

Best Answer

If $a=0$, then $\gcd(a,b)=\operatorname{lcm}(a,b)=\lvert b\rvert$ and $\gcd(a,c)=\operatorname{lcm}(a,c)=\lvert c\rvert$, so we get $2\lvert b\rvert = 2\lvert c\rvert \;\;\to\;\; \lvert b\rvert = \lvert c\rvert$. For $a\neq 0$, rearranging your equation results in

$$\operatorname{lcm}(a,b) - \operatorname{lcm}(a,c) = \gcd(a,c) - \gcd(a,b) \tag{1}\label{eq1A}$$

Since $a \mid \operatorname{lcm}(a,b)$ and $a \mid \operatorname{lcm}(a,c)$, this means $a$ divides the LHS above. However, we have $0 \lt \gcd(a,c) \le \lvert a\rvert$ and $0 \lt \gcd(a,b) \le \lvert a\rvert$, so the RHS is $\gt -\lvert a\rvert$ and $\lt \lvert a\rvert$, so since $a$ divides it, this means it must be $0$. Thus, we get

$$\operatorname{lcm}(a,b) = \operatorname{lcm}(a,c), \;\; \gcd(a,c) = \gcd(a,b) \tag{2}\label{eq2A}$$

Using the relationship you mentioned of $\gcd(a,b)\cdot \operatorname{lcm}(a,b) = \lvert ab\rvert$, and \eqref{eq2A} above, gives that

$$\gcd(a,b)\cdot \operatorname{lcm}(a,b) = \lvert ab\rvert = \gcd(a,c)\cdot \operatorname{lcm}(a,c) = \lvert ac\rvert \;\to\; \lvert ab\rvert = \lvert ac\rvert \;\to\; \lvert b\rvert = \lvert c\rvert \tag{3}\label{eq3A}$$

Related Question