If $\gcd(a,b,c) = 1$ and $c = {ab\over a-b}$, then prove that $a-b$ is a square.

elementary-number-theorygcd-and-lcm

If $\gcd(a,b,c) = 1$ and $c = {ab\over a-b}$, then prove that $a-b$ is a square. $\\$
Well I tried expressing $a=p_1^{a_1}.p_2^{a_2} \cdots p_k^{a_k}$ and $b = q_1^{b_1}.q_2^{b_2}\cdots q_k^{b_k}$ and $c=r_1^{c_1}.r_2^{c_2}\cdots r_k^{c_k}$ basically emphasizing on the fact that the primes which divide $a$ are different from those that divide $b$ and $c$, but I couldn't come up with anything fruitful. $\\$
Any help would be appreciated. $\\$
Thanks

EDIT:- $a,b,c$ are positive integers.

Best Answer

Note $\,(a\!-\!b)(a\!+\!c)=a^2\,$ and $\, \overbrace{(\color{#c00}{a\!-\!b,a\!+\!c})=1}^{\text{see comments}}\,$ hence $\,a\!-\!b\,$ is a square. $\ \small\rm QED$


Or $\,d \!=\! a\!-\!b\,$ below $\:\!\Rightarrow\:\! d = \color{#0a0}{(a,b)^2},\,$ i.e. use factorization refinement (Four Number Theorem).

Lemma $\,\ \color{c00}{cd = ab}\, \Rightarrow\, d = \color{#0a0}{(d,a)(d,b)}\ $ if $\ (a,b,c,d)\! =\! 1.\ $ Proof $ $ one liner: expand $\rm\color{#0a0}{product}$.

Related Question