If $F=(x^2,y^2,z^2),S=\{x^2+y^2+z^2=1,z\geq 0\}$, evaluate $\iint_S F . dS$

definite integralsmultivariable-calculus

I'm having trouble computing this. In spherical coordinates we get

$$\int_0^{2\pi}\int_0^{\pi/2}\sin^4\theta\cos^3\phi+\sin^4\theta\sin^3\phi+\cos^3\theta\sin\theta d\theta d\phi \tag 1$$

which is really hard to evaluate. But we know that the normal vector to the sphere is $r=(x,y,z)$, hence,

$$\iint_S F . r \ dS=\iint_S (x^2,y^2,z^2) \cdot (x,y,z) dS \\ = \iint_S (x^3+y^3+z^3) dS = \iint_S (x^3 + y^3) dS + \iint_S z^3 dS \tag 2$$

Can we say that the first summand evaluates to zero since $S$ is symmetrical with respect to the x and y-axes? Is $(2)$ equal to $(1)$ then?

I'm super confused. Help!

Best Answer

hint

Use the formula

$$\iint_S\vec{F}(x,y,z).\vec{ds}=\iiint_Vdiv(\vec{F})dv$$

to get $$2\iiint_V(x+y+z)dxdydz=$$ $$2\int_0^1\int_0^{2\pi}\int_0^{\frac{\pi}{2}}(\cos(t)\sin(f)+\sin(t)\sin(f)+\cos(f))\sin(f)drdtdf$$

Related Question