If $f:\mathbb{R} \to [0,\infty)$ is Lebesgue measurable and $\int_{(n,n+1]}f dm = 0$ for all $n \in \mathbb{Z}$, then $\int_E fdm =0$ for all $E$.

lebesgue-integrallebesgue-measuremeasure-theoryproof-verification

Let $m$ denote the Lebesgue measure on the Lebesgue sigma algebra $\mathcal{M}$. If $f:\mathbb{R} \to [0,\infty)$ is Lebesgue measurable and $\int_{(n,n+1]}f dm = 0$ for all $n \in \mathbb{Z}$, then $\int_E fdm =0$ for all $E \in \mathcal{M}$.

I think the statement is true. I tried to prove it below. However, the question was given as "Prove/Disprove". If it is actually false, please let me know why.

Proof.
Let $E \in \mathcal{M}$. Note that $f$ is measurable and $\chi_{_{(n,n+1]}} $ is measurable for all $n \in \mathbb{Z}$. Hence, $f\chi_{_{(n,n+1]}} $ is measurable for all $n \in \mathbb{Z}$. Then notice that

\begin{align}
\int\sum_{n\in \mathbb{Z}}f\chi_{_{(n,n+1]}}dm & = \int \left( \sum_{n\in \mathbb{N}}f\chi_{_{(n,n+1]}} + \sum_{n\in \mathbb{N}}f\chi_{_{(-n,-n+1]}}\right)dm\\
& = \sum_{n\in \mathbb{N}}\int f\chi_{_{(n,n+1]}}dm + \sum_{n\in \mathbb{N}}\int f\chi_{_{(-n,-n+1]}}dm\\
& = \sum_{n\in \mathbb{N}}\int_{(n,n+1]} fdm + \sum_{n\in \mathbb{N}}\int_{(-n,-n+1]} fdm\\
& = 0 & (\text{by assumption}).
\end{align}

Now, we have
\begin{align}
\int_E fdm & = \int_{E \cap (\cup_{n \in \mathbb{Z}}(n,n+1])}fdm\\
& = \int f \chi_{_{E \cap (\cup_{n \in \mathbb{Z}}(n,n+1])}}dm\\
& = \int f \chi_{_{(\cup_{n \in \mathbb{Z}}E\cap(n,n+1])}}dm\\
& = \int \sum_{n\in \mathbb{Z}} f\chi_{_{E\cap(n,n+1]}}dm\\
& \leq \int \sum_{n\in \mathbb{Z}} f\chi_{_{(n,n+1]}}dm\\
& = 0 & (\text{by the above}).
\end{align}

Best Answer

If $f\ge 0$ and $\int_A f = 0$ then $f=0$ ae. on $A$. Hence $f$ is zero ae on every $(n,n+1]$, hence $f=0$ a.e It follows that $\int_E f =0$.