If $f$ and $1/f$ are harmonic then $f$ is holomorphic or antiholomorphic

complex-analysis

I have this problem.

Let $f:D\to \mathbb{C}$ be a function such that $f$ and $1/f$ are harmonic (Their real and imaginary parts are harmonic). Then $f$ is holomorphic or antiholomorphic.

I tried to solve it by computing the laplacian of real and imaginary parts, but it becomes very cumbersome. Is there a better way?

Best Answer

Possible idea. Let $f=f(x,y)$. If $f$ and $1/f$ are harmonic then $$ \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0 $$ $$ \frac{\partial^2 1/f}{\partial x^2} + \frac{\partial^2 1/f}{\partial y^2} = 0 $$ where $$ \frac{\partial 1/f}{\partial x} = -\frac{\partial f}{\partial x} \frac{1}{f^2} \qquad \frac{\partial^2 1/f}{\partial x^2} = -\frac{\partial^2 f}{\partial x^2} \frac{1}{f^2} +2\left(\frac{\partial f}{\partial x}\right)^2\frac{1}{f^3} $$

$$ \frac{\partial 1/f}{\partial y} = -\frac{\partial f}{\partial y} \frac{1}{f^2} \qquad \frac{\partial^2 1/f}{\partial y^2} = -\frac{\partial^2 f}{\partial y^2} \frac{1}{f^2} +2\left(\frac{\partial f}{\partial y}\right)^2\frac{1}{f^3} $$ So $$ -\frac{\partial^2 f}{\partial x^2} \frac{1}{f^2} +2\left(\frac{\partial f}{\partial x}\right)^2\frac{1}{f^3}-\frac{\partial^2 f}{\partial y^2} \frac{1}{f^2} +2\left(\frac{\partial f}{\partial y}\right)^2\frac{1}{f^3} = \frac{2}{f^3}\left(\left(\frac{\partial f}{\partial x}\right)^2+\left(\frac{\partial f} {\partial y}\right)^2\right) $$

$$ \frac{2}{f^3}\left(\left(\frac{\partial f}{\partial x}\right)^2+\left(\frac{\partial f} {\partial y}\right)^2\right)=0 $$ Since $f \not \equiv 0$, we have $$ 0=\left(\frac{\partial f}{\partial x}\right)^2+\left(\frac{\partial f} {\partial y}\right)^2 =\left(\frac{\partial f}{\partial x}+\frac{\partial f} {\partial y}i\right)\left(\frac{\partial f}{\partial x}-\frac{\partial f} {\partial y}i\right) $$

Related Question