If $a,b,c\ge0:a+b+c=3,$ prove $\sqrt{a+b+b^2}+\sqrt{b+c+c^2}+\sqrt{c+a+a^2}\ge 3\sqrt{3}.$

a.m.-g.m.-inequalityalgebra-precalculusbuffalo-waycontest-mathinequality

Problem. Let $a,b,c\ge0:a+b+c=3.$ Prove that $$\sqrt{a+b+b^2}+\sqrt{b+c+c^2}+\sqrt{c+a+a^2}\ge 3\sqrt{3}.$$
Equality holds at $(1,1,1);(0,0,3).$

I tried to use some classical inequality but it seems hard to apply. The following is just a thought:

By AM-GM$$\sum_{cyc}\sqrt{a+b+b^2}=\frac{1}{\sqrt{3}}\sum_{cyc}\sqrt{3(a+b+b^2)}\ge 2\sqrt{3}\sum_{cyc}\frac{a+b+b^2}{a+b+b^2+3},$$which is not good enough.

I think we can find suitable yields $a+b+b^2=f(a,b,c)$ and save two of equality cases.

Hope to see some ideas. Thanks for your interest.

Best Answer

My third proof (Sketch).

Fact 1: Let $x, y, z \ge 0$ such that $$3(x^2y^2 + y^2z^2 + z^2x^2) + x^2y^2z^2(x^2 + y^2 + z^2) \ge 12, $$ and $$(x^2 + y^2 + z^2)(3 + 2x^2y^2z^2) \ge 15.$$ Then, $x + y + z \ge 3$.

$\phantom{2}$

Let $$x = \sqrt{(a + b + b^2)/3}, \quad y = \sqrt{(b + c + c^2)/3}, \quad z = \sqrt{(c + a + a^2)/3}.$$ We can prove that $$3(x^2y^2 + y^2z^2 + z^2x^2) + x^2y^2z^2(x^2 + y^2 + z^2) \ge 12$$ and $$(x^2 + y^2 + z^2)(3 + 2x^2y^2z^2) \ge 15.$$

By Fact 1, we have $x + y + z \ge 3$.

We are done.