If $a,b,c\ge 0: ab+bc+ca=3,$ prove $\sqrt{\frac{a}{a+b+6}}+\sqrt{\frac{b}{c+b+6}}+\sqrt{\frac{c}{a+c+6}}\le \frac{3\sqrt{2}}{4}.$

algebra-precalculuscontest-mathinequalitymultivariable-calculus

Problem. If $a,b,c\ge 0$ and $ab+bc+ca=3,$ prove that $$\sqrt{\frac{a}{a+b+6}}+\sqrt{\frac{b}{c+b+6}}+\sqrt{\frac{c}{a+c+6}}\le \frac{3\sqrt{2}}{4}.$$

I tried to use Cauchy-Schwarz inequality but this way leads to reverse inequality.

Indeed, $$\sum_{cyc}\sqrt{\frac{a}{a+b+6}}=\sum_{cyc}(\sqrt{a}\cdot\sqrt{\frac{1}{a+b+6}})\le (a+b+c)\sum_{cyc}\frac{1}{a+b+6}.$$It implies to prove $$\frac{1}{a+b+6}+\frac{1}{c+b+6}+\frac{1}{a+c+6}\le \frac{9}{8(a+b+c)}.$$ But by Cauchy-Schwarz again,$$\frac{1}{a+b+6}+\frac{1}{c+b+6}+\frac{1}{a+c+6}\ge\frac{9}{2(a+b+c)+18} \ge \frac{9}{8(a+b+c)}.$$
I hope to see some ideas. Thank you for your interest.

Best Answer

Some thoughts.

By Cauchy-Bunyakovsky-Schwarz inequality, we have $$\left(\sum_{\mathrm{cyc}} \sqrt{\frac{8a}{a + b + 6}}\right)^2 \le \left(\sum_{\mathrm{cyc}} \frac{8a}{a + 1/2}\right)\left(\sum_{\mathrm{cyc}} \frac{a + 1/2}{a + b + 6}\right). \tag{1}$$

It suffices to prove that $$\left(\sum_{\mathrm{cyc}} \frac{8a}{a + 1/2}\right)\left(\sum_{\mathrm{cyc}} \frac{a + 1/2}{a + b + 6}\right) \le 9. \tag{2}$$ (2) is true which is verified by Mathematica.