If $a+b+c=3,$ prove $a\sqrt{b^2+c^2+abc}+b\sqrt{a^2+c^2+abc}+c\sqrt{b^2+a^2+abc}\ge 3\sqrt{3abc}.$

cauchy-schwarz-inequalityinequality

Problem. Let $a,b,c\ge 0: a+b+c=3.$ Prove that $$a\sqrt{b^2+c^2+abc}+b\sqrt{a^2+c^2+abc}+c\sqrt{b^2+a^2+abc}\ge 3\sqrt{3abc}.$$


I've tried to use AM-GM.

Firstly, we can rewrite the OP as$$\sum_{cyc}a\sqrt{1+\frac{b^2+c^2}{abc}}\ge 3\sqrt{3}.$$
We have $b^2+c^2\ge 2bc$ and it leads to wrong inequality$$a\sqrt{1+\frac{2}{a}}+b\sqrt{1+\frac{2}{b}}+c\sqrt{1+\frac{2}{c}}\ge 3\sqrt{3}.$$
Also, by AM-GM $$\sum_{cyc}a\sqrt{1+\frac{b^2+c^2}{abc}}\ge 3\sqrt[3]{abc\cdot\sqrt{\prod\limits_{cyc}\dfrac{b^2+c^2+abc}{abc}}}.$$
Hence, we need to prove
$$(a^2+b^2+abc)(b^2+c^2+abc)(c^2+a^2+abc)\ge 27abc.$$
I used $$a^2+b^2+abc\ge 3\sqrt[3]{a^3b^3c},$$which gave reverse $abc\ge 1.$

Hope to see better ideas. Thank you.

Best Answer

The desired inequality is written as $$\sum_{\mathrm{cyc}}\frac{a}{3}\sqrt{b^2 + c^2 + \sqrt{abc}^2} \ge \sqrt{3abc}. \tag{1}$$

We may use Jensen's inequality.

Let $f(x, y, z) := \sqrt{x^2 + y^2 + z^2}$. Then $f$ is convex. By Jensen's inequality, we have \begin{align*} \mathrm{LHS}_{(1)} &= \frac{a}{3}f(b, c, \sqrt{abc}) + \frac{b}{3}f(c, a, \sqrt{abc}) + \frac{c}{3}f(a, b, \sqrt{abc})\\ &\ge f\left(\frac{ab + bc + ca}{3}, \frac{ab + bc + ca}{3}, \sqrt{abc}\right)\\ &= \sqrt{\left(\frac{ab + bc + ca}{3}\right)^2 + \left(\frac{ab + bc + ca}{3}\right)^2 + abc}\\ &\ge \sqrt{3abc} \end{align*} where we use $(ab + bc + ca)^2 \ge 3(a + b + c)abc$ in the last inequality.

We are done.