If $(a_n)$ is convergent, then $\liminf (a_n+b_n) = \lim a_n + \liminf b_n$

alternative-prooflimsup-and-liminfreal-analysis

I'm trying to prove below result about $\liminf$.

Let $a_n, b_n \in \mathbb R$ such that $(a_n)$ is convergent, then
$$
\liminf (a_n+b_n) = \lim a_n + \liminf b_n.
$$

  • Could you have a check on my proof?
  • Are there other simpler (or more direct) approaches?

My attempt: Clearly, $A :=\liminf (a_n+b_n) \ge \lim a_n + \liminf b_n$. Let's prove the reverse inequality. Let $\varphi$ be a subsequence of $\mathbb N$ such that
$$
a_{\varphi (n)} + b_{\varphi (n)} \to A, \quad n \to \infty.
$$

We have $a_{\varphi (n)} \to a :=\lim a_n$, so $b_{\varphi (n)} \to A-a$. Clearly, $A-a \ge b := \liminf b_n$. Assume the contrary that $A-a > b$. Then there is a subsequence $\psi$ of $\mathbb N$ such that $\lim_n b_{\psi (n)} < A-a$. Then
$$
A \le \lim_n (a_{\psi (n)} + b_{\psi (n)}) = a + \lim_n b_{\psi (n)}< a + (A-a) =A.
$$

Then we obtain a contradiction. This completes the proof.

Best Answer

Clearly, $\liminf (a_n+b_n) \ge \lim a_n + \liminf b_n$,

Let's prove the reverse inequality.

$$\lim\inf b_n=\lim\inf((a_n+b_n)+(-a_n))\ge \lim\inf(a_n+b_n)+\lim\inf(-a_n)$$

Since $a_n$ is convergent, we have: $$\lim\inf(-a_n)=-\lim\sup a_n=-\lim a_n$$

Plug in and we get: $$\begin{align} \lim\inf b_n&\ge \lim\inf(a_n+b_n)-\lim a_n\\ \\ \lim\inf b_n+\lim a_n&\ge \lim\inf(a_n+b_n)\end{align}$$

Related Question