Ideas for calculation of an expectation

expected valueintegrationnormal distribution

I have an $\mathbb R^d$-valued random variable $X$ that is distributed with density $f$. I don't know anything about $f$ except that it is $\mathcal C^2$ and its second derivative is in $L^2$.

Now consider the function $$g(x) = \frac{1}{2}\Sigma^{-0.5}(x – \mu)(x – \mu)'\Sigma^{-0.5}\times
\\\sqrt{2\pi}^{-d}\det(\Sigma^{-1})\exp\left(-\frac{1}{2}(x – \mu)'\Sigma^{-1}(x – \mu)\right),$$
so $g$ is basically the derivative of a multivariate normal distribution with respect to $\Sigma$. Since $g$ is measurable, $g(X)$ is a random variable and I am now interested in $$\mathbb E[g(X)] = \int_{\mathbb R^d}g(x)f(x)\:\mathrm dx$$

My attempt so far was to use a the substitution: $x = \Sigma^{0.5}y + \mu$. Then $$\mathbb E[g(X)] = \int_{\mathbb R^{d}}\frac{1}{2} yy'\exp\left(-\frac{1}{2}y'y\right)f(\mu + \Sigma^{0.5}y)\:\mathrm dy $$
But now I got stuck. Since I don't know $f$, all I can do is to use a second order Taylor approximation: $$f(\mu + \Sigma^{0.5}y) = f(\mu) + y'\Sigma^{0.5}\nabla f(\mu) + y'\Sigma^{0.5}\nabla^2f(\mu)\Sigma^{0.5}y + o(\Vert\Sigma^{0.5}y\Vert^2).$$

If I chose this approach, I have to calculate the following terms:

$$A = \int\frac{1}{2}f(\mu)yy'\exp\left(-\frac{1}{2}{y'y}\right)\:\mathrm dy = \frac{1}{2}f(\mu)\sqrt{2\pi}^d I_{d\times d}$$
This is correct, I hope, because it was the simplest part.

The second term gives me more trouble:
$$ B = \frac{1}{2}\left(\int yy'y\exp\left(-\frac{1}{2}y'y\right) \:\mathrm dy\right)\Sigma^{0.5}\nabla f(\mu)$$
I dont know what to do here. Same goes for the third part:

$$C = \frac{1}{2}\int yy'y'\Sigma^{0.5}\nabla^2f(\mu)y\exp\left(-\frac{1}{2}y'y\right)\:\mathrm dy $$
and the little oh part:

$$D = o\left(\int yy'y'\Sigma y\exp\left(-\frac{1}{2}y'y\right)\:\mathrm dy\right)$$

I have problems with integrating things like $yy'y$, $yy'Cy$. On the one hand, its like computing third moments for a normal distribution but because of the vectors it isn't. I hope that someone has an idea how to process the terms in $B$, $C$ and $D$.

If nothing helps, I would be also be happy with assuming that $\Sigma$ is a diagonal matrix and then derive upper bounds for the diagonal elements of $\mathbb E[g(X)]$.

Best Answer

We will use the following facts: \begin{align} \int_{\mathbb{R}} \exp(-\tfrac{1}{2}x^2)\mathrm{d} x &= \sqrt{2\pi}, \\ \int_{\mathbb{R}} x^2 \exp(-\tfrac{1}{2}x^2)\mathrm{d} x &= \sqrt{2\pi}, \\ \int_{\mathbb{R}} x^4\exp(-\tfrac{1}{2}x^2)\mathrm{d} x &= 3\sqrt{2\pi}, \\ \int_{\mathbb{R}} x^{2k+1} \exp(-\tfrac{1}{2}x^2)\mathrm{d} x &= 0 \end{align} where $k\ge 0$ is an integer.

It is easy to get $$I_1 = \int_{\mathbb{R}^d} yy^{\mathsf{T}}\exp(-\tfrac{1}{2}y^{\mathsf{T}}y)\mathrm{d} y = \sqrt{2\pi}^d I_d$$ and $$I_2 = \int_{\mathbb{R}^d} y(y^{\mathsf{T}}y)\exp(-\tfrac{1}{2}y^{\mathsf{T}}y)\mathrm{d} y = 0.$$

Let us deal with the third part. Denote $Q = \Sigma^{1/2}\nabla^2 f(\mu)\Sigma^{1/2}$. Let $Q = U\mathrm{diag}(\lambda_1, \lambda_2, \cdots, \lambda_d)U^{\mathsf{T}}$ be the eigendecomposition of $Q$ where $\lambda_1, \lambda_2, \cdots, \lambda_d$ are the eigenvalues of $Q$, and $U$ is an orthogonal matrix whose columns are the eigenvectors of $Q$. We have \begin{align} I_3 &= \int_{\mathbb{R}^d} yy^{\mathsf{T}} y^{\mathsf{T}}Q y \exp(-\tfrac{1}{2}y^{\mathsf{T}}y)\mathrm{d} y\\ &= \int_{\mathbb{R}^d} yy^{\mathsf{T}} y^{\mathsf{T}} U\mathrm{diag}(\lambda_1, \lambda_2, \cdots, \lambda_d)U^{\mathsf{T}} y \exp(-\tfrac{1}{2}y^{\mathsf{T}}y)\mathrm{d} y \\ &= U \left(\int_{\mathbb{R}^d} zz^{\mathsf{T}} z^{\mathsf{T}}\mathrm{diag}(\lambda_1, \lambda_2, \cdots, \lambda_d)z \exp(-\tfrac{1}{2}z^{\mathsf{T}}z)\mathrm{d} z\right) U^{\mathsf{T}}\\ &= U \left(\int_{\mathbb{R}^d} zz^{\mathsf{T}} (\sum\nolimits_k \lambda_k z_k^2) \exp(-\tfrac{1}{2}z^{\mathsf{T}}z)\mathrm{d} z\right) U^{\mathsf{T}}\\ &= \sqrt{2\pi}^d U \left(2\mathrm{diag}(\lambda_1, \lambda_2, \cdots, \lambda_d) + (\sum\nolimits_k \lambda_k)I_d \right) U^{\mathsf{T}}\\ &= 2 \sqrt{2\pi}^d Q + \mathrm{Tr}(Q)\sqrt{2\pi}^d I_d \end{align} where we have used the substitution $z = U^{\mathsf{T}} y$ (about the change of variables, see [1], and [2] Ch. 2.1).

Reference

[1] J. Schwartz, "The Formula for Change in Variables in a Multiple Integral", The American Mathematical Monthly, Vol. 61, No. 2 (Feb., 1954), pp. 81-85

[2] Robb J. Muirhead, "Aspects of multivariate statistical theory", 2005.

Related Question