How would you calculate this limit? $\lim\limits_{n \rightarrow\infty}\frac{\pi}{2n}\sum\limits_{k=1}^{n}\cos\left(\frac{\pi}{2n}k\right)$

definite integralslimitsreal-analysis

I decided to calculate $\int_{0}^{\pi/2}cos(x)dx$ using the sum definition of the integral. Obviously the answer is $1$ . I managed to calculate the resulting limit using the geometric series, taking the real part of the complex exponential function and several iterations of l'hopital's rule. Are you able to simplify this absolute mess, i.e. find a better way of arriving at the desired answer?

$$\lim\limits_{n \rightarrow\infty}\frac{\pi}{2n}\sum\limits_{k=1}^{n}\cos\left(\frac{\pi}{2n}k\right)$$

Every answer is highly appreciated =)

PS: If you want to see my solution, feel free to tell me! =)

Best Answer

According to this question

$$1 + \sum\limits_{k=1}^n \cos{(k \theta)}=\frac{1}{2}+\frac{\sin\left[\left(n+\frac{1}{2}\right)\theta\right]}{2\sin\left(\frac{\theta}{2}\right)}$$

As a result

$$\lim\limits_{n \rightarrow\infty}\frac{\pi}{2n}\sum\limits_{k=1}^{n}\cos\left(\frac{\pi}{2n}k\right)= \lim\limits_{n \rightarrow\infty}\frac{\pi}{2n}\left(\frac{1}{2}+\frac{\sin\left[\left(n+\frac{1}{2}\right)\frac{\pi}{2n}\right]}{2\sin\left(\frac{\frac{\pi}{2n}}{2}\right)}-1\right)=\\ \lim\limits_{n \rightarrow\infty}\frac{\pi}{2n}\left(\frac{\sin\left(\frac{\pi}{2}+\frac{\pi}{4n}\right)}{2\sin\left(\frac{\pi}{4n}\right)}-\frac{1}{2}\right)= \lim\limits_{n \rightarrow\infty}\frac{\pi}{2n}\left(\frac{\cos\left(\frac{\pi}{4n}\right)}{2\sin\left(\frac{\pi}{4n}\right)}\right)=\\ \frac{\lim\limits_{n \rightarrow\infty}\cos\left(\frac{\pi}{4n}\right)}{\lim\limits_{n \rightarrow\infty} \frac{\sin\left(\frac{\pi}{4n}\right)}{\frac{\pi}{4n}}}=\frac{1}{1}=1$$ using the fact that $\lim\limits_{x\rightarrow 0}\frac{\sin{x}}{x}=1$.

Related Question