Integration – How to Prove $\int_{0}^{1}{\frac{x \arctan(x)}{1+x^4}} \, dx=\int_{0}^{1}{\frac{x^3 \text{arctanh}(x)}{1+x^4}} \, dx$

definite integralsintegration

How do I prove the equality of the two integrals: $$\int_{0}^{1}{\dfrac{x \arctan(x)}{1+x^4}} \ dx=\int_{0}^{1}{\dfrac{x^3 \text{arctanh}(x)}{1+x^4}} \ dx.$$

This question is based on observation, both the integrals equate to almost $0.211\cdots$

Also the first integral has been evaluated to be $$\dfrac{\pi^2}{32}-\dfrac{\ln^2{\sqrt{2}+1}}{8}$$From the question: Find the value of the integral: $\int_{0}^{1}\dfrac{x}{1+x^4}\arctan(x)\,\mathrm{d}x$

Some of the methods outlined in the answers to the question are too advanced and out of my reach for now

Best Answer

\begin{align}J&=\int_0^1 \frac{x\arctan x}{1+x^4}dx\\ &=\int_0^1 \frac{x}{1+x^4}\int_0^1 \left(\frac{x}{1+t^2x^2}dt\right)dx\\ &=2\left(\int_0^1 \frac{x^2}{1+x^4}dx\right)\left(\int_0^1 \frac{1}{1+t^4}dt\right)-\int_0^1\frac{t}{1+t^4}\int_0^1 \left(\frac{t}{1+t^2x^2}dx\right)dt\\ &=2\left(\underbrace{\int_0^1 \frac{x^2}{1+x^4}dx}_{=B}\right)\left(\underbrace{\int_0^1 \frac{1}{1+t^4}dt}_{=A}\right)-J\\ J&=\boxed{AB}\\ K&=\int_0^1 \frac{x^3\text{arctanh }x}{1+x^4}dx\\ &=\int_0^1 \frac{x^3}{1+x^4}\left(\int_0^1 \frac{x}{1-t^2x^2}dt\right)dx\\ &=-A^2-B^2+\int_0^1 \frac{1}{t(1+t^4)}\left(\int_0^1 \frac{t}{1-t^2x^2}dx\right)dt\\ &=-A^2-B^2+\underbrace{\int_0^1 \frac{\text{arctanh }t}{t}dt}_{u=\frac{1-t}{1+t}}-K\\ K&=-\frac{A^2}{2}-\frac{B^2}{2}-\frac{1}{2}\underbrace{\int_0^1 \frac{\ln u}{1-u^2}du}_{=-\frac{\pi^2}{8}}\\ &=\boxed{-\frac{A^2}{2}-\frac{B^2}{2}+\frac{\pi^2}{16}} \end{align} On the other hand, \begin{align}2J-2K&=2AB+A^2+B^2-\frac{\pi^2}{8}\\ &=(A+B)^2-\frac{\pi^2}{8}\\ &=\left(\underbrace{\int_0^1 \frac{1+x^2}{1+x^4}dx}_{=Z}\right)^2-\frac{\pi^2}{8}\\ Z&=\int_0^1 \frac{1+\frac{1}{x^2}}{\left(\frac{1}{x}-x\right)^2+2}dx\\ &\overset{u=\frac{1}{x}-x}=\int_0^\infty \frac{1}{2+u^2}du\\ &=\frac{\pi }{2\sqrt{2}}\\ \end{align} Therefore, \begin{align}Z^2&=\frac{\pi^2}{8}\\ 2J-2K&=0\\ &\boxed{J=K} \end{align}