How to integrate $\int_0^{\infty} \frac{\log(t+1)}{t^2+a^2} \mathrm{d}t$

calculusintegrationlogarithms

How do I integrate the following integral:

$$\int_0^{\infty} \frac{\log(t+1)}{t^2+a^2} \mathrm{d}t$$

Where $a$ is some parameter?

I know that the solution includes Lerch Transcendents and logs (which is what I'm trying to arrive at); however, I've tried integrating this function, but failed.

I've already tried using simplifying it using series, which yielded a bunch of integrals as follows:

$$-\sum_{k \geq 1} \frac{(-1)^k}{k} \int_0^1 \frac{t^k} {t^2+a^2} \mathrm{d}t – \frac{1}{a^2} \sum_{k \geq 1} \frac{(-1)^k}{k} \int_0^1 \frac{t^k} {t^2+\frac{1}{a^2}} \mathrm{d}t + \frac{1}{a^2} \sum_{k \geq 1} \frac{(-1)^k}{k} \int_0^1 \frac{\log(t)} {t^2+\frac{1}{a^2}} \mathrm{d}t$$

However, I don't know how I'd proceed forwards from here.

Best Answer

\begin{align} &\int_0^{\infty} \frac{\log(t+1)}{t^2+a^2} \ dt\\ =& \int_0^{\infty}\int_0^1 \frac{t}{(t^2+a^2)(1+yt)}dy \ dt\\ =& \int_0^1 \frac1{1+a^2y^2}\int_0^\infty\left(\frac{a^2y}{t^2+a^2}+ \frac{t}{t^2+a^2}-\frac{y}{1+yt}\right)dt\ dy\\ = & \ \frac\pi2 \int_0^1 \frac{ay}{1+a^2y^2}dy-\int_0^1 \frac{\ln (a)}{1+a^2y^2}\ dy- \int_0^1 \frac{\ln (y)}{1+a^2y^2}\ dy\\ =& \ \frac\pi{4a}\ln(1+a^2)-\frac1a\ln (a)\tan^{-1}(a) -\frac i{2a}(\mathrm{Li}_2(ia)-\mathrm{Li}_2(-ia)) \end{align}