How to get the second solution to the Power Series Solution

calculusordinary differential equationspower seriessolution-verification

I have the indicated DE: \begin{equation} y''-y'=0 \end{equation} The solutions are as follows: \begin{equation} y(x)= c_0e^x+c_1\end{equation}
I have to solve the problem using power series method so I have the given power series representation of the DE: \begin{equation}\sum_{n=2}^\infty n(n-1)c_nx^{n-2}-\sum_{n=1}^\infty nc_nx^{n-1}=0 \end{equation}
I then set the same indices, and get the following: \begin{equation}\sum_{k=1}^\infty (k+1)(k)c_{k+1}x^{k-1}-\sum_{k=1}^\infty kc_kx^{k-1}=0\end{equation} Then I combined the two summations into one: \begin{equation}\sum_{k=0}^\infty[(k+1)(k)c_{k+1}-kc_k]x^{k-1}=0\end{equation} Then I set the inner portion of the sum equal to 0. \begin{equation}(k)(k+1)c_{k+1}-kc_{k}=0 \end{equation}Then I get the following equation: \begin{equation}c_{k+1}=\frac{c_k}{k+1} \end{equation} The smallest value one can plug in is 0, then we get the following: $c_1=\frac{c_0}{1}$ Then as I keep plugging in I get the following:$y=c_0+c_0(x)+c_0\frac{x^2}{2!}+c_0\frac{x^3}{3!}….$

Then I get $y=c_0e^x$, but I am missing a solution any thoughts?

Best Answer

$$\begin{equation}\sum_{n=2}^\infty n(n-1)c_nx^{n-2}-\sum_{n=1}^\infty nc_nx^{n-1}=0 \end{equation}$$ Change all the indices: $$\begin{equation}\sum_{n=0}^\infty (n+2)(n+1)c_{n+2}x^{n}-\sum_{n=0}^\infty (n+1)c_{n+1}x^{n}=0 \end{equation}$$ $$\begin{equation}\sum_{n=0}^\infty ((n+2)(n+1)c_{n+2}-(n+1)c_{n+1})x^{n}=0 \end{equation}$$ Hence : $$(n+2)c_{n+2}=c_{n+1} \text { for } n \ge 0$$ $$\implies c_n=\dfrac {c_1}{n!} \text { for } n \ge 1$$ The solution is : $$y(x)=\sum_{n=0}^\infty c_nx^n$$ $$y(x)=c_0+\sum_{n=1}^\infty c_nx^n=c_0+\sum_{n=1}^\infty \dfrac {c_1}{n!}x^n$$ $$y(x)=c_0-c_1+\sum_{\color{red}{n=0}}^\infty \dfrac {c_1}{n!}x^n =\underbrace {c_0-c_1}_{\text {=constant } C}+c_1e^x $$ $$\boxed {y(x)=C+C_1e^x}$$ The second solution is simply a constant.

Related Question