Calculus – How to Evaluate Integrals of Arctanh Form

calculusdefinite integralsintegration

Few cases have been evaluated:

$n=1$: https://math.stackexchange.com/q/4795632

$n=3:$ https://math.stackexchange.com/q/4801245

I want to know if there is a method to find all related integrals of the form
$$\int_{0}^{1}{\dfrac{\operatorname{arctanh}(x)x^{n}}{1+x^{n+1}} \ dx}$$

How do I evaluate these kinds of integrals?

Best Answer

Integrate by parts to rewrite the integral as follows \begin{align} I_n=&\int_0^1 \frac{x^{n-1}\tanh^{-1} x}{1+x^n}dx\\ =& \frac1n \int_0^1 \tanh^{-1} x\ d\left(\ln\frac{1+x^n}2\right) \overset{ibp}=-\frac1n \int_0^1\frac{\ln\frac{1+x^n}2}{1-x^2}dx \end{align} Odd Case: Apply $$1+x^{2m+1}=(1+x)\prod_{k=1}^m (x^2+2x\cos a_k+1), \>\>\>\>\>a_k=\frac{2k\pi}{2m+1} $$ along with $\prod_{k=1}^m 2(1+\cos a_k)=1$ and $ \int_0^1\frac{\ln(1+t)}t dt=\frac{\pi^2}{12}$ \begin{align} I_{2m+1}=& \frac{-1}{2m+1} \int_0^1 \bigg(\ln\frac{1+x}2 + \sum_{k=1}^m \ln\frac{x^2+2x\cos a_k+1}{2+2\cos a_k}\bigg)\overset{x=\frac{1-t}{1+t}}{\frac{dx}{1-x^2}}\\ = & \ \frac{\pi^2}{24} -\frac1{2(2m+1)} \sum_{k=1}^m\int_0^1 \frac{\ln{(t^2 \tan^2\frac{a_k}2+1})}{t}dt \\ =& \ \frac{\pi^2}{24} +\frac1{4(2m+1)} \sum_{k=1}^m \text{Li}_2(-\tan^2\frac{a_k}2) \end{align}

Even Case: Analogous to the odd case $$ I_{2m} = \frac{\pi^2}{24} +\frac1{8m} \sum_{k=1}^{m} \text{Li}_2(-\tan^2\frac{b_k}2),\>\>\>\>\>b_k= \frac{(2k-1)\pi}{2m} $$ which can be further reduced per the symmetry of $b_k$, as well as the inverse formula $\text{Li}_2 (-z)+ \text{Li}_2 (-\frac1z)=-\frac{\pi^2}6-\frac12\ln^2 z $, i.e. \begin{align} I_{2m} = &\ \frac{\pi^2}{24}+\frac1{8m}\bigg[-\frac{m\pi^2}{12} -\frac12\sum_{k=1}^{[\frac m2]} \ln^2(\tan^2\frac{b_k}2)\bigg]\\ =&\ \frac{\pi^2}{32}-\frac1{4m}\sum_{k=1}^{[\frac m2]} \ln^2(\tan\frac{b_k}2) \end{align}