How $r^2 \sin \varphi$ come

multivariable-calculus

Taken from here

We have $\operatorname{div} \vec{f} = 3x^2+3y^2+3z^2$, which in spherical coordinates

$$
\begin{align}
x & = r \cos \theta \sin \varphi, \\
y & = r \sin \theta \sin \varphi, \\
z & = r \cos \varphi,
\end{align}
$$

for $0 \leq \theta \leq 2 \pi$ and $0 \leq \varphi \leq \pi$, becomes $\operatorname{div} \vec{f} = 3 r^2.$

Therefore, using Gauss's Theorem we obtain

$$
\begin{align}
\int\limits_{\mathbb{S}^2} \vec{f} \cdot \vec{n} \, \text{d}S & = \int\limits_{B} \operatorname{div} \vec{f} \, \text{d}V \\
& = \int_0^{2\pi} \hspace{-5pt} \int_0^{\pi} \hspace{-5pt} \int_0^1 (3r^2) \cdot (r^2 \sin \varphi) \, \text{d} r \, \text{d} \varphi \, \text{d} \theta \\
& .
\end{align}
$$

My confusion: why $dV=r^2 \sin \varphi \text{d} r \, \text{d} \varphi \, \text{d} \theta?$

Im not getting that how $r^2 \sin \varphi$ come ?

Best Answer

Intuivitely you can think of $r^2\sin\varphi$ as the product of $r$ (which is the arc length of a radian of latitude along a meridian of a sphere with radius $r$), and $r\sin\varphi$ (which is the arc length of a radian of longitude along a parallel with the given $\varphi$ of a sphere with radius $r$).

Formally it's just the Jacobian determinant (modulo a sign that I don't care to work out) of the spherical coordinate map $$ \begin{pmatrix} r \\ \varphi \\ \theta \end{pmatrix} \mapsto \begin{pmatrix} r\sin\varphi\cos\theta \\ r \sin\varphi\sin\theta \\ r \cos\varphi \end{pmatrix} $$

Related Question