How many positive integer solution pairs $(x, y)$ are there for the equation $y^2 = \frac{(x^5 – 1)}{(x-1)} $, $x\neq 1$

contest-mathelementary-number-theory

How many positive integer solution pairs $(x, y)$ are there for the
equation $$y^2 = \frac{(x^5 – 1)}{(x-1)},\;\; x\neq 1\;?$$

Source : Bangladesh Math Olympiad 2016 Junior Catagory

I am unable to find if there are any solutions or not.

Best Answer

Assume $y^2=\frac{x^5-1}{x-1}=x^4+x^3+x^2+x+1$ for positive integers $x,y$ (and $x\ne 1$).

Case 1: $x$ is even. Then $$\left(x^2+\frac x2\right)^2=x^4+x^3+\frac14x^2<y^2$$ and $$\left(x^2+\frac x2+1\right)^2=x^4+x^3+\frac94 x^2+x+1>y^2,$$ contradiction as $y^2$ cannot be strictly between two consecutive squares..

Case 2: $x$ is odd. Then $$\begin{align}\left(x^2+\frac {x-1}2\right)^2&=x^4+x^3-\frac34x^2-\frac12x+\frac14\\&=y^2-\frac14(7x^2+5x+3)<y^2\end{align}$$ and $$\begin{align}\left(x^2+\frac {x+1}2\right)^2&=x^4+x^3+\frac54x^2+\frac12x+\frac14\\ &=y^2+\frac14(x^2-2x-3)\\&=y^2+\frac14(x+1)(x-3)\\&\ge y^2\end{align}$$ with equality iff $x=3$. In other words, we arrive at a contradiction for odd $x>3$ and at the same time see that $x=3$ leads to a solution.