How many $g$ in a finite group are such that $b=g^{-1}ag$ for given $a\ne b$ in the group

equivalence-relationsfinite-groupsgroup-theory

Given a group $G$, we know that we can set up an equivalence relation among its elements by defining $a \equiv b \Leftrightarrow \exists g \in G|b=g^{-1}ag$ (conjugacy). Let's define $\mathcal{F}_b^{(a)}:=\lbrace g \in G|b=g^{-1}ag \rbrace$ and denote by $C_G(a)$ the centralizer of $a$ in $G$. If $b \ne a$, then $\mathcal{F}_b^{(a)} \cap C_G(a)=\emptyset$; in fact, $g \in \mathcal{F}_b^{(a)} \cap C_G(a) \Rightarrow$ $ag=gb \wedge ag=ga \Rightarrow gb=ga \Rightarrow b=a$. We can therefore state that $b \ne a \Rightarrow$ $\mathcal{F}_b^{(a)}=\lbrace g \in \complement_G(C_G(a))|b=g^{-1}ag \rbrace$, $\complement_G(X)$ being the complement in $G$ of any subset $X \subseteq G$.

My question is the following. Let's take $G$ finite and $a,b \in G$ with $b \ne a$: how can we express the cardinality of $\mathcal{F}_b^{(a)}$ ?

Best Answer

Consider the application $$ f(a, g)=g^{-1}ag $$ then clearly $$ f(f(a, g), h)=f(a, gh) $$

If exists $g\in \mathcal F^{(a)}_b$ then $$\begin{align} h\in \mathcal F^{(a)}_b &\Leftrightarrow f(a, g)=f(a, h)\\ &\Leftrightarrow f(a, g)=f(f(a, hg^{-1}), g)\\ &\Leftrightarrow a=f(a, hg^{-1})\\ &\Leftrightarrow hg^{-1}\in C_G(a)\\ &\Leftrightarrow h\in C_G(a)g \end{align}$$ so if $F^{(a)}_b$ isn't empty there exists $g\in G$ such that $F^{(a)}_b=C_G(a)g$ then $$ \left\lvert F^{(a)}_b\right\rvert\, =\begin{cases} 0 & \text{if }\mathcal F^{(a)}_b\text{ is empty}\\ \lvert C_G(a)\rvert & \text{otherwise} \end{cases} $$

Observe that $b\neq b'$ implies that $\mathcal F^{(a)}_b\cap \mathcal F^{(a)}_{b'}=\emptyset$ so all non empty $\mathcal F^{(a)}_b$ determine a partition of $G$ so there're exactly $\lvert G : C_G(a)\rvert$ different $b\in G$ such that $\mathcal F^{(a)}_b$ is not empty.

Related Question