How do you compute $\int_{-1}^{0}\frac{dx}{\sqrt[3]{x^3-x}}$

definite integralsintegration

Compute the integral
$$\int_{-1}^{0}\frac{dx}{\sqrt[3]{x^3-x}}.$$

I have no idea on how to go about this. I tried factoring it to $(x-1)x(x+1)$ and did $u=x-1$ or $u=x+1$, but it leads to nothing. Trig-sub and hyperbolic sub is impossible because of that 0 in the top bound. Then I tried king's rule and it just makes the problem worse. Is there a sneaky trick to this??

Best Answer

This integral can be converted to the Beta function.

$$\begin{align} I &=\int_{-1}^{0}\frac{dx}{\sqrt[3]{x^3-x}}=\int_{0}^{1}\frac{dx}{\sqrt[3]{x-x^3}}\tag{1}\\ &=\int_{0}^{1}\frac{dx}{\sqrt[3]{x}\cdot\sqrt[3]{1-x^2}}\tag{2}\\ &=3\int_0^1\frac{y\,dy}{\sqrt[3]{1-y^6}}\tag{3}\\ &=\frac12\int_0^1 u^{-2/3}(1-u)^{-1/3}\,du\tag{4}\\ &=\frac12 B\left(\frac13,\frac23\right)\tag{5}\\ &=\frac{\pi}{\sqrt3}.\tag{6}\\ \end{align}$$

$\text{Explanations:}$

$(3)$ Substitute $y=\sqrt[3]x$.

$(4)$ Substitute $u=y^6$.

$(5)$ The definition of the Beta function.

$(6)$ A property: $B(x,1-x)=\frac{\pi}{\sin(\pi x)}$ for $x\in(0,1)$.

Related Question