How do sets with $\liminf / \limsup$ inside or outside relate

limsup-and-liminfprobability theory

Let $(X_n)$ be a sequence of random variables. I would like to know what can be said about the relation between $\{\liminf X_n < 0\}$ or $\{\liminf X_n > 0\}$, and the sets formed by any combination of $\liminf, \limsup$, and $<, \leq, \geq, >$, e.g. $\liminf \{ X_n < 0 \}, \limsup \{ X_n > 0 \}…$

Thank you very much!

Best Answer

Since $\liminf_n X_n = \sup_n \inf_{k\geq n} X_k$, the sequence $\inf_{k\geq n} X_k$ is monotonically increasing. Hence $$ \{\liminf_n X_n \le 0\} = \bigcap_{n=1}^\infty \{\inf_{k\geq n} X_k< 0\} = \bigcap_{n=1}^\infty \bigcup_{k\geq n} \{X_k< 0\} $$ As for $\{\liminf_n X_n>0\}$: the condition $\liminf_n X_n>0$ means that there is an index $n$ such that $\inf_{k\geq n} X_k >0$, i.e. there is an index $n$ such that for any $k\geq n$ $X_k>0$. Writing in set-formalism yields $$\{\liminf_n X_n\ge0\} = \bigcup_{n=1}^\infty \bigcap_{k\geq n} \{X_k>0\}. $$ By definition, for a sequence of sets $A_n$ we denote by \begin{align*} \limsup_n A_n &= \bigcap_{n=1}^\infty \bigcup_{k\geq n} A_k \\ \liminf A_n &=\bigcup_{n=1}^\infty \bigcap_{k\geq n} A_k.\end{align*} Now denote by $A_k = \{X_k>0\}$ and by $B_k=\{X_k<0\}$, then \begin{align*} \liminf_n A_n &= \{\liminf_n X_n\ge0\} \\ \limsup_n B_n & =\{\liminf_n X_n\le0\} \end{align*} Update: Now as for $\{\liminf_n X_n>0\}$. This means that there exists $m\in \mathbb N$ and an $N\in \mathbb N$ s.t. for any $n\geq N$ $\{X_k\geq \frac1m\}$, i.e. $$ \{\liminf_n X_n>0\} = \bigcup_{m\geq 1} \bigcup_{n\geq1} \bigcap_{k\geq n} \{X_k\geq \frac1m\}. $$ $\{\liminf_n X_n <0\}$ can be handled similarily.