How can Weierstrass product for the gamma function reduce to Wallis formula for $\pi$

analysiscalculusgamma functioninfinite-productpi

According to the Wikipedia article about Pi, if we set $z=\frac{1}{2}$ to
$$\Gamma (z)=\dfrac{e^{-\gamma z}}{z}\displaystyle\prod_{n=1}^\infty \dfrac{e^{z/n}}{1+z/n}$$
and square the result, we get the Wallis product for $\pi$.

In my attempt, I ended up with
$$\displaystyle\prod_{n=1}^\infty \dfrac{4n^2e^{1/n}}{(2n+1)^2}=\dfrac{\pi e^\gamma}{4},$$
but I don't know what to do next.

Best Answer

Note that $$\gamma=\lim_{n\to\infty}\left(1+\frac12+\cdots+\frac1n-\ln n\right)$$ and so $$e^{\gamma}=\lim_{n\to\infty}\frac{e^1e^{1/2}\cdots e^{1/n}}n.$$ Thus $$\prod_{n=1}^\infty \dfrac{4n^2e^{1/n}}{(2n+1)^2} =e^{\gamma}\lim_{N\to\infty}N\prod_{n=1}^N \frac{(2n)^2}{(2n+1)^2} =\frac{e^\gamma}2\lim_{n\to\infty}\frac21\frac23\frac43\cdots \frac{2N}{2N-1}\frac{2N}{2N+1}$$ which looks a bit more like the Wallis product.