How can i prove this $\lim\limits_{n\to \infty}\dfrac{\sum_{k=1}^{n} \left(\frac1k\right)}{\sum_{k=1}^{n}{\sin \left(\frac1k\right)}}=1$

calculusharmonic-numbers

I have accrossed the following sum in my textbook $\lim\limits_{n\to \infty}\dfrac{\sum_{k=1}^{n} \left(\frac1k\right)}{\sum_{k=1}^{n}{\sin \left(\frac1k\right)}}=1$ , I have tried to evaluate nominator which it gives me $H_n$ n th Harmonic number , and in the denominator i have used this approach ${\sin \left(\frac1k\right)}\sim \frac1k $ for $k \to \infty $ but i can't get $1$. Any way ?

Best Answer

The sequences $$ a_n =\sum_{k=1}^{n}{\sin \frac1k} \,, \, b_n = \sum_{k=1}^{n} \frac1k $$ satisfy the conditions of the Stolz–Cesàro theorem: $(b_n)$ is strictly increasing and divergent, and $$ \lim_{n \to \infty} \frac{a_n - a_{n-1}}{b_n - b_{n-1}} = \lim_{n \to \infty} \frac{\sin \frac1n}{\frac1n} = 1 $$ exists. The theorem then states that $$ \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{a_n - a_{n-1}}{b_n - b_{n-1}} = 1 \, . $$

Related Question