Hodge star operator on complex manifold

complex-geometrydifferential-formshodge-theory

The Hodge star is defined as
\begin{equation}
\alpha\wedge\overline{\star\beta} = \langle\alpha,\beta\rangle(\star1),\quad
\alpha,\beta\in\Omega^{p,q}(M).
\end{equation}

Here the inner product $\langle\alpha,\beta\rangle$ is defined as
\begin{equation}
\langle\alpha,\beta\rangle
= \frac1{p!q!}\sum_{I,\bar J}\alpha_{I,\bar J}\overline{\beta_{I,\bar J}}.
\end{equation}

Applying this definition for $\alpha = \beta = 1$,
$1\wedge\overline{\ast1} = \langle1,1\rangle(\ast1) = (\ast1)$.
On the other hand, for $\alpha = 1$ and $\beta = i$
\begin{equation}
1\wedge\overline{\ast i}
= \langle 1,i\rangle(\ast1)
= -i(\ast1)
= (-i)1\wedge\overline{\ast1}
= 1\wedge\overline{i(\ast1)}.
\end{equation}

Then, $\ast i = i(\ast1)$.
Does it imply $\ast$ is a linear operator?

However, I found that $\ast$ is anti-linear here
https://physics.stackexchange.com/a/162861/190058

My derivation above is wrong?

P.S. For the Hodge star,
the transformation for basis is
\begin{equation}\label{1}
\ast(\theta^I\bar\theta^{\bar J})
= \frac{(-i)^{n^2}}{(n-p)!(n-q)!}\varepsilon^{I\bar J}_{\quad I'\bar J'}\bar\theta^{I'}\theta^{\bar J'},
\end{equation}

and
\begin{equation}
\ast(\bar\theta^I\theta^{\bar J})
= \frac{i^{n^2}}{(n-p)!(n-q)!}\varepsilon^{I\bar J}_{\quad I'\bar J'}\theta^{I'}\bar\theta^{\bar J'},
\end{equation}

where the last equation is the complex conjugation of the first one.
($\because$ $\text{c.c.}(\ast\beta)
= \text{c.c.}(\ast a + i\ast b)
= \ast a – i\ast b
= \ast(a – i\ast b)
= \ast(\text{c.c.}(\beta))$
)

On the other hand, by changing the order of basis,
\begin{align}
\ast(\bar\theta^{\bar J}\theta^I)
= \frac{(-i)^{n^2}}{(n-p)!(n-q)!}\varepsilon^{\bar JI}_{\quad\bar J'I'}\theta^{\bar J'}\bar\theta^{I'}.
\end{align}

For the first one and this one, which is correct?

Best Answer

There are a few conventions here. You can check whether it is linear as follows: $$\forall\alpha:\alpha\wedge \overline{\ast(k\beta)}=\langle \alpha,k\beta\rangle (\ast1)=\bar k\langle \alpha,\beta\rangle (*1)=\alpha\wedge\overline{k\ast(\beta)}\Longrightarrow \ast(k\beta)= k\ast(\beta)$$

On the other hand, it is also common in the literature to define the Hodge star operator by the equation $\alpha\wedge\ast\beta=\langle \alpha,\beta\rangle(\ast1)$. Likewise, we can check $$\forall\alpha:\alpha\wedge\ast(k\beta)=\langle\alpha,k\beta\rangle(\ast1)=\bar k\langle\alpha,\beta\rangle(\ast 1)=\alpha\wedge\bar k\ast(\beta)\Longrightarrow\ast(k\beta)=\bar k\ast(\beta)$$

This becomes antilinear. Note that the first one sends a $(p,q)$-form to $(n-q,n-p)$ form meanwhile the second definition sends a $(p,q)$-form to $(n-p,n-q)$ form.

Related Question