Help with $\int_0^{\frac{\pi}{2}} \frac{x \cos(x)}{\sin^2(x)+1} \; \mathrm{d}x = \frac{1}{2} \sinh^{-1}(1)^2$

integration

I've been trying to do the above integral using elementary methods. So far, I've reduced the integral down to evaluating $\displaystyle \int_0^1 \frac{\tan^{-1}(x)}{\sqrt{1-x^2}} \; \mathrm{d}x$ or $\displaystyle \int_0^1 \frac{\sin^{-1}(x)}{1+x^2} \; \mathrm{d}x$ through a u-sub and IBP, but neither of these integrals seem to yield an elementary method.

Any help would be great.

Best Answer

\begin{align} \int_0^{\frac{\pi}{2}} \frac{x \cos(x)}{\sin^2(x)+1} \; \mathrm{d}x&\overset{\text{IBP}}=\Big[x\arctan(\sin x)\Big]_0^{\frac{\pi}{2}}-\int_0^{\frac{\pi}{2}}\arctan(\sin x)\,dx\\ &=\frac{\pi^2}{8}-\int_0^{\frac{\pi}{2}}\arctan(\sin x)\,dx\\ &\overset{u=\sqrt{\frac{1-\sin x}{1+\sin x}}}=\frac{\pi^2}{8}-2\int_0^1 \frac{\arctan\left(\frac{1-x^2}{1+x^2}\right)}{1+x^2}\,dx\\ &=\frac{\pi^2}{8}-2\int_0^1\frac{\arctan(1)}{1+x^2}\,dx+2\int_0^1\frac{\arctan(x^2)}{1+x^2}\,dx\\ &=2\int_0^1\frac{\arctan(x^2)}{1+x^2}\,dx\\ \int_0^1 \dfrac{\arctan(x^2)}{1+x^2}dx&=\Big[\arctan x\arctan(x^2)\Big]_0^1-\int_0^1 \dfrac{2x\arctan x}{1+x^4}dx\\ &=\dfrac{\pi^2}{16}-\int_0^1 \dfrac{2x\arctan x}{1+x^4}dx\\ \end{align}

Since,

$\displaystyle \arctan x=\int_0^1 \dfrac{x}{1+t^2x^2}dt$

then,

\begin{align} \displaystyle K&=\int_0^1 \dfrac{2x\arctan x}{1+x^4}dx\\ \displaystyle &=\int_0^1\int_0^1 \dfrac{2x^2}{(1+t^2x^2)(1+x^4)}dtdx\\ \displaystyle &=\int_0^1\int_0^1 \left(\dfrac{2t^2}{(1+t^4)(1+x^4)}+\dfrac{2x^2}{(1+x^4)(1+t^4)}-\dfrac{2t^2}{(1+t^4)(1+t^2x^2}\right)dtdx\\ &=\displaystyle 4\left(\int_0^1 \dfrac{t^2}{1+t^4}dt\right)\left(\int_0^1 \dfrac{1}{1+x^4}dx\right)-K \end{align}

Therefore,

$\displaystyle K=2\left(\int_0^1 \dfrac{x^2}{1+x^4}dx\right)\left(\int_0^1 \dfrac{1}{1+x^4}dx\right)$

Since,

\begin{align}\displaystyle \int_0^1 \dfrac{x^2}{1+x^4}dx&=\frac{1}{2\sqrt{2}}\left[\dfrac{1}{2}\ln\left(\dfrac{x^2-\sqrt{2}x+1}{x^2+\sqrt{2}x+1}\right)+\arctan\left(\sqrt{2}x+1\right)+\arctan\left(\sqrt{2}x-1\right)\right]_0^1\\ &=\dfrac{1}{4\sqrt{2}}\Big(\pi+\ln\left(3-2\sqrt{2}\right)\Big) \end{align}

and,

\begin{align}\displaystyle \int_0^1 \dfrac{1}{1+x^4}dx&=\dfrac{1}{2\sqrt{2}}\left[\dfrac{1}{2}\ln\left(\dfrac{x^2+\sqrt{2}x+1}{x^2-\sqrt{2}x+1}\right)+\arctan\left(\sqrt{2}x+1\right)+\arctan\left(\sqrt{2}x-1\right)\right]_0^1\\ &=\dfrac{1}{4\sqrt{2}}\Big(\pi-\ln\left(3-2\sqrt{2}\right)\Big) \end{align}

Therefore,

$\boxed{K=\displaystyle \dfrac{\pi^2}{16}-\dfrac{1}{16}\Big(\ln\left(3-2\sqrt{2}\right)\Big)^2}$

Since, $\displaystyle 3-2\sqrt{2}=\left(1-\sqrt{2}\right)^2=\frac{1}{\left(1+\sqrt{2}\right)^2}$

Therefore,

$\displaystyle \ln^2\left(3-2\sqrt{2}\right)=4\ln^2\left(1+\sqrt{2}\right)$

Thus,

$\boxed{\displaystyle\int_0^{\frac{\pi}{2}} \frac{x \cos(x)}{\sin^2(x)+1} \; \mathrm{d}x=\dfrac{1}{2}\Big(\ln(1+\sqrt{2})\Big)^2}$

Related Question