Real Analysis – Hardy-Littlewood Strong Type Estimate, Final Equation of Proof

analysislebesgue-integralmeasure-theoryreal-analysis

I am reading https://en.wikipedia.org/wiki/Hardy–Littlewood_maximal_function proof of strong type estimate and I understand everything but this last equation:

$$2Cp \int_0^\infty \int_{\lvert f \rvert >\frac{1}{2}}t^{p-2} \lvert f \rvert dxdt=C_p \lVert f \rVert_p^p$$ where $C_p$ depends only on $p$ and $d$ where $f$ domain is $R^d$

How can I see it? I think it has to have something in common with the Cavalieri principle : $$\int_{R^d}\lvert f \rvert ^p dx=p\int_0^\infty t^{p-1}m(f>t)dt$$

where $m$ is $d$ dimensional Lebesgue measure, but I can't derive this particular equation.

Best Answer

I will try to extend my comment to an answer. I will call this integral as $I$. Use Fubini's or Tonelli's Theorem to interchange the integrals, we get

$$I=2C_p\int_{\mathbb{R}^n}|f|\int_0^{\infty}t^{p-2}\chi_{ \{|f|>\frac{t}{2}\} }dtdx.$$

Now put $t^{p-1}=2^{p-1}u$

$=>(p-1)t^{p-2}dt=2^{p-1}du$. We get

$$I=\frac{2^pC_p}{p-1}\int_{\mathbb{R}^n}|f|dx\int_0^{\infty}\chi_{ \{|f|^{p-1}>u \} }du.$$

Use Layer cake representation of a function i.e.,

$$|f(x)|=\int_0^{\infty}\chi_{ \{|f|>t \} }dt.$$

We have,

$$I=\frac{2^pC_p}{p-1}\int_{\mathbb{R}^n}|f|^pdx.$$

Related Question