Hard functional equation: $ f \big ( x y + f ( x ) \big) = f \big( f ( x ) f ( y ) \big) + x $

contest-mathfunctional-equationsfunctions

Let $ \mathbb R _ { > 0 } $ be the set of positive real numbers. Find all functions $ f : \mathbb R _ { > 0 } \to \mathbb R _ { > 0 } $ such that
$$ f \big ( x y + f ( x ) \big) = f \big( f ( x ) f ( y ) \big) + x $$
for all positive real numbers $ x $ and $ y $.

What I thought: We could change $ x $ by $ y $, and then subtract.

Source: Brazil National Olympiad 2019 #3

Best Answer

Exchanging $x$ and $y$ and substracting, it follows $f(xy+f(x))-f(xy+f(y))=x-y$. In particular, if $f(x)=f(y)$ then $x=y$.

The equation also tells us that if $r > f(x)$, we can find a $y> 0$ such that $r=f(x)+xy$, so $f(r)=f(xy+f(x))=f(f(x)f(y))+x > x$, ie that if $r > f(x)$, $f(r) > x$.

In particular, if $x > f(x)$, $f(x) > x$, so we have, for all $x$, $f(x) \geq x$.

Now, let us fix some $x > 0$ such that $f(x)>x$.

Define, for any $y > 0$, $g(y)=\frac{f(x)}{x}(f(y)-1)$. If $g(y)>0$, then note that $xg(y)+f(x)=f(x)f(y)$, thus $f(xy+f(x))=f(xg(y)+f(x))+x$.

Therefore, if $y >0$ and $g^n(y)>0$ is defined, $0<f(xg^n(y)+f(x))=f(xy+f(x))-nx$. As a consequence, $n < \frac{f(xy+f(x))}{x}+1$ (the precise estimate is irrelevant, just remember tha the RHS is explicit in $x$ and $y$).

In particular, there exists some $n \geq 0$ (depending on $x,y$) such that $g^n(y) > 0$ is defined and $g^{n+1}(y) \leq 0$.

Now, take $y > \alpha$, where $f(x)(\alpha-1)=x\alpha$. Then $g(y)=\frac{f(x)}{x}(f(y)-1) \geq \frac{f(x)}{x}(y-1) > f(x)(\alpha-1)/x=\alpha$.

We find that $g^n(y)$ is defined and positive for all $n$, a contradiction.

Related Question