Gram Schmidt Process for a Complex Vector Space

inner-productslinear algebraorthonormalvector-spaces

Suppose I have certain independent vectors, say $\lvert V_1\rangle$ and $\lvert V_2\rangle$, which span a 2-dimensional subspace of a given Complex Vector Space on which inner product is defined, how is the standard Gram Schmidt Process extended?

Even though StackExchange has answers to related questions, I have a problem with how exactly the method works. Following the process, we get $$\lvert v_1\rangle = \frac{\lvert V_1 \rangle}{\sqrt{\langle V_1 \rvert V_1 \rangle}}$$ and $$\lvert V_2' \rangle = \lvert V_2 \rangle – \langle V_2 \rvert v_1 \rangle \lvert v_1 \rangle$$ and $$\lvert v_2 \rangle = \frac{\lvert V_2 \rangle – \langle V_2 \rvert v_1 \rangle \lvert v_1 \rangle}{\sqrt{\langle V_2' \rvert V_2' \rangle}}$$Now $\lvert v_1 \rangle$ and $\lvert v_2 \rangle$ form an orthonormal basis for the given subspace. If this is true, then $\langle v_1 \rvert v_2 \rangle$ should be equal to 0.

But, $$\langle v_1 \rvert v_2 \rangle = \langle v_1 \rvert \left(\frac{\lvert V_2 \rangle – \langle V_2 \rvert v_1 \rangle \lvert v_1 \rangle}{\sqrt{\langle V_2' \rvert V_2' \rangle}}\right)$$ Since $\langle v_1 \rvert v_1 \rangle = 1$, $$\langle v_1 \rvert v_2 \rangle = \frac{\langle v_1 \rvert V_2 \rangle – \langle V_2 \rvert v_1 \rangle}{\sqrt{\langle V_2 \rvert V_2 \rangle}}$$ $$\langle v_1 \rvert v_2 \rangle = \frac{\langle v_1 \rvert V_2 \rangle – {\langle v_1 \rvert V_2 \rangle}^*}{\sqrt{\langle V_2 \rvert V_2 \rangle}}$$ But the final equation is not necessarily zero for a complex vector space. Am I going wrong somewhere?

Best Answer

The problem lies in your definition of $\lvert v_2\rangle$. It should be$$\lvert v_2 \rangle = \frac{\lvert V_2'\rangle - \langle V_2'\rvert v_1 \rangle \lvert v_1 \rangle}{\sqrt{\langle V_2' \rvert V_2' \rangle}}.$$Using this definition, you will get that, indeed, $\langle v_1|v_2\rangle=0$. Unless your inner product is linear in the first variable and anti-linear in the second one. Then it should be$$\lvert v_2 \rangle = \frac{\lvert V_2'\rangle - \langle V_2'\rvert v_1 \rangle^*\lvert v_1 \rangle}{\sqrt{\langle V_2' \rvert V_2' \rangle}}.$$