Gradient, divegence and curl of functions of the position vector

grad-curl-divvector analysis

For scalar functions $f$ of the position vector $\vec{r}$, it seems as if the following relations apply:

  • $\nabla f(\vec{a}\cdot\vec{r})=\vec{a}f'(\vec{a}\cdot\vec{r})$
  • $\nabla \cdot \vec{b}f(\vec{a}\cdot\vec{r})=\vec{a}\cdot\vec{b}f'(\vec{a}\cdot\vec{r})$
  • $\nabla \times \vec{b}f(\vec{a}\cdot\vec{r})=\vec{a}\times\vec{b}f'(\vec{a}\cdot\vec{r})$

where $\vec{a}$ and $\vec{b}$ are arbitrary vectors independent of position.

Is this generally true? How to prove this (I can see how it works in a certain coordinate system, but how to prove it in general?).

Is this a symptom of something that is more generally true (how nabla operations on functions that depend on $\vec{r}$ correspond with normal 'scalar differentiation' w.r.t. $\vec{r}$)

Best Answer

If $\vec a$ is independent of $\vec r$, then we have from the chain rule

$$\begin{align} \nabla f(\vec a\cdot \vec r)&=\sum_{i=1}^3\hat x_i \frac{\partial f(a_1x_1+a_2x_2+a_3x_3)}{\partial x_i}\\\\&=\sum_{i=1}^3\hat x_i \,a_i f'(\vec a\cdot \vec r)\\\\&=\vec a f(\vec a\cdot \vec r) \end{align}$$

If $\vec a$ and $\vec b$ are independent of $\vec r$, then we have

$$\begin{align} \require{cancelto} \nabla \cdot \left(\vec b\cdot f(\vec a\cdot \vec r)\right)&=\vec b\cdot\nabla \left(f(\vec a\cdot \vec r)\right)+f(\vec a\cdot \vec r) \cancelto0{\nabla \cdot \left(\vec b\right)}\\\\ &=\vec b\cdot\nabla \left(f(\vec a\cdot \vec r)\right)\\\\ &=\vec b \cdot \vec a f'\left(\vec a\cdot \vec r\right) \end{align}$$

and

$$\begin{align} \nabla \times \left(\vec b f(\vec a\cdot \vec r)\right)&=\nabla \left(f(\vec a\cdot \vec r)\right)\times \vec b+f(\vec a\cdot \vec r)\cancelto0{\nabla \times \left(\vec b\right)}\\\\ &=-\vec b\times \nabla \left(f(\vec a\cdot \vec r)\right)\\\\ &=\vec a\times \vec b \, f'\left(\vec a\cdot \vec r\right) \end{align}$$

Related Question