Linear Algebra – Determine Fourth Line Perpendicular to Three Given Lines

linear algebravector-spacesvectors

The problem I have been working with asks us to find a fourth vector line perpendicular to the given vector lines:

$$\begin{align*}
\mathbf{r}(t_1) &= \begin{bmatrix} 1 + 2t_1 \\ t_1 \\ -3 + 2t_1 \end{bmatrix} \\
\end{align*}$$

$$\begin{align*}
\mathbf{q}(t_2) &= \begin{bmatrix} t_2 \\ t_2 \\ t_2 \end{bmatrix} \\
\end{align*}$$

$$\begin{align*}
\mathbf{w}(t_3) &= \begin{bmatrix} 2\\ t_3 \\ 0 \end{bmatrix} \\
\end{align*}$$

I worked out the direction vector perpendicular to each direction vector by using dot product.

$$d = (1,0,-1)$$

I am not sure how to determine the complete parametric form of the line. Any tips? Thank you

Best Answer

Suppose the three lines are given by

$ p(t_1) = p_0 + t_1 v_1 $

$ q(t_2) = q_0 + t_2 v_2 $

$ r(t_3) = r_0 + t_3 v_3 $

and that there exists constants $\alpha$ and $\beta$ such that

$ v_3 = \alpha v_1 + \beta v_2 $

Then define $ v_4 = v_1 \times v_2 $, then $v_4$ will be perpendicular to $v_1$ and to $v_2$ and also to $v_3$. Thus we now have the line

$ s(t_4) = s_0 + t_4 v_4 $

We want $s(t_4)$ to intersect $p(t_1) , q(t_2) , r(t_3) $ at three different values of $t_4$, let's call them $t_4, t_5, t_6$, so we now have

$ s_0 + t_4 v_4 = p_0 + t_1 v_1 $

$ s_0 + t_5 v_4 = q_0 + t_2 v_2 $

$ s_0 + t_6 v_4 = r_0 + t_3 v_3 $

From the first equation, we have

$ s_0 = p_0 + t_1 v_1 - t_4 v_4 $

Substituting in the other two equations

$ p_0 + t_1 v_1 + (t_5 - t_4 ) v_4 = q_0 + t_2 v_2 $

$ p_0 + t_1 v_1 + (t_6 - t_4) v_4 = r_0 + t_3 v_3 $

This gives the linear system

$ A t = b $

where

$A = \begin{bmatrix} v_1 && - v_2 && 0 && - v_4 && v_4 && 0 \\ v_1 && 0 && - v_3 && - v_4 && 0 && v_4 \end{bmatrix} $

and

$ b = \begin{bmatrix} q_0 - p_0 \\ r_0 - p_0 \end{bmatrix} $

And

$ t = [t_1, t_2, t_3, t_4, t_5, t_6 ]^T $

Note that $A$ is a $6 \times 6$ matrix.

If this system has a solution, then it is possible to pass a fourth line through the three given lines, with it being perpendicular to them.

Related Question