Given $\int_{\frac13}^{\frac23}f(x)dx=0$, how to prove $4860(\int_0^1f(x)dx)^2\le 11\int_0^1|f”(x)|^2dx$

integral-inequality

Suppose $f\in C^2[0,1]$, and
$\int_{\frac13}^{\frac23}f(x)dx=0$.
Prove that
$$\left(\int_0^1f(x)dx\right)^2\le \frac{11}{4860}\int_0^1|f''(x)|^2dx.$$

This problem is quite similar to Prove the following integral inequality: $\int_{0}^{1}(f''(x))^2dx\ge 1920\left(\int_{0}^{1}f(x)dx\right)^2$.
I have tried to write
$$\int_0^1f(x)dx=\int_0^{\frac13}f(x)dx+\lambda \int_{\frac13}^{\frac23}f(x)dx+\int_{\frac23}^{1}f(x)dx$$ for any $\lambda \in \mathbb{R}$, and pick a suitable $g$ such that
$$\int_0^1f(x)dx=\int_0^1g(x)f''(x)dx$$
then we can use Cauchy-Schwarz inequality to get what we want. How can I get the function $g$?

Best Answer

This is essentially following the steps in my answer to a quasi-similar question. I'm not going to explain how I find the function $g(x)$ below.


Let $X = \mathcal{C}^2[0,1]$ and $P,Q,C : X \to \mathbb{R}$ be functionals over $X$ defined by

$$P(f) = \int_0^1 f''(x)^2 dx,\quad Q(f) = \int_0^1 f(x)dx\quad\text{ and }\quad C(f) = \int_{1/3}^{2/3} f(x) dx$$

The question can be rephrased as

Given $f \in X$ with $C(f) = 0$, how to verify $\;P(f) \ge \frac{4860}{11} Q(f)^2$?

Since both the inequality and constraint is homogeneous in scaling of $f$ by a constant. We can restrict our attention to those $f$ which satisfies $C(f) = 0$ and $Q(f) = 1$.

Consider following functions

$$\phi(x) = x^4 - \frac12 x^2 + \frac{29}{6480} \quad\text{ and }\quad \psi(x) = \begin{cases} \left(\frac13-x\right)^4, & x \le \frac13\\ 0, & \frac13 \le x \le \frac23\\ \left(x - \frac23\right)^4, & x \ge \frac23 \end{cases} $$ Combine them and define another function $g(x)$ by $$g(x) = -\frac{405}{11}\left[ \phi\left(x-\frac12\right) - \frac32 \psi(x) \right]$$ It is not hard to check

  1. $g(x) \in \mathcal{C}^3[0,1] \subset X$.
  2. $C(g) = 0$, $Q(g) = 1$.
  3. $g''(0) = g'''(0) = g''(1) = g'''(1) = 0$
  4. $g''''(x) = \frac{4860}{11}$ for $x \in [0,\frac13)\cup (\frac23,1]$
  5. $g''''(x) = -\frac{9720}{11}$ for $x \in (\frac13,\frac23)$
  6. $P(g) = \frac{4860}{11}$.

For any $f \in X$ with $C(f) = 0, Q(f) = 1$, let $\eta = f - g$, we have

$$\begin{align} & P(f) - P(g) - P(\eta)\\ = & 2\int_0^1 g''(x)\eta''(x) dx\\ = & 2\int_0^1 ( g''(x)\eta'(x))' - g'''(x)\eta'(x) dx\\ = & 2\int_0^1 ( g''(x)\eta'(x) - g'''(x)\eta(x))' + g''''(x)\eta(x)dx\\ = &2\left\{\left[ g''(x)\eta'(x) - g'''(x)\eta(x) \right]_0^1 + \frac{4860}{11}(Q(\eta)-C(\eta)) -\frac{9720}{11}C(\eta)\right\} \end{align} $$ What's in the square bracket vanish because of $(3)$. The remain terms vanish because

  • $Q(\eta) = Q(f) - Q(g) = 1 - 1 = 0$.
  • $C(\eta) = C(f) - C(g) = 0 - 0 = 0$.

Together with the fact $P(\eta)$ is non-negative, we obtain:

$$P(f) = P(g) + P(\eta) \ge P(g) = \frac{4860}{11}$$.

Related Question