Given a recursion $a_{n+ 1}= \sqrt{na_{n}+ 2n+ 1}$ with $a_{1}\geq 1.$ Prove that $a_{n}\sim n\,{\rm as}\,n\rightarrow\infty$

alternative-prooflaurent serieslimitsrecurrence-relationsrecursion

Given a recursion $a_{n+ 1}= \sqrt{na_{n}+ 2n+ 1}$ with $a_{1}\geq 1.$ Prove that
$$a_{n}\sim n\,{\rm as}\,n\rightarrow\infty$$

Let $b_{n}= \dfrac{a_{n}}{n},$ we need to prove $\lim b_{n}= 1,$ then we find a value $\beta\in\left ( 0, 1 \right )$ satisfying $\left | b_{n+ 1}- 1 \right |\leq\beta\left | b_{n}- 1 \right |$ so that
$$\beta\rightarrow 0\,{\rm aut}\,n\rightarrow\infty$$
I can't predict the relationship among them, I need the the help to go to the induction, thank you.

Best Answer

You can prove by induction on $n$ that $$ n \le a_n \le n + a_1 . $$ Indeed, for $n=1$, these inequalities hold. To move from $n$ to $n+1$, note that $$ a_{n + 1} \ge \sqrt {n \cdot n + 2n + 1} = \sqrt {(n + 1)^2 } = n + 1 $$ and \begin{align*} a_{n + 1} & \le \sqrt {n(n + a_1 ) + 2n + 1} = \sqrt {(n + 1)^2 + na_1 } \\ & \le \sqrt {(n + 1)^2 + 2(n + 1)a_1 + a_1^2 } = n + 1 + a_1 . \end{align*}

Related Question