Getting the wrong value from $\lim_\limits{x\to-\infty}x-\sqrt{x^2+7x}$

algebra-precalculuslimitslimits-without-lhopitalwolfram alpha

Consider the following limit
$$
\lim_{x\to-\infty}x-\sqrt{x^2+7x}
$$

Going through some algebra leads to
$$\begin{align}
\lim_{x\to-\infty}x-\sqrt{x^2+7x}&=\lim_{x\to-\infty}\frac{(x-\sqrt{x^2+7x})(x+\sqrt{x^2+7x})}{(x+\sqrt{x^2+7x})}\\
&=\lim_{x\to-\infty}\frac{-7x}{x+\sqrt{x^2+7x}}\\
&=\lim_{x\to-\infty}\frac{-7}{1+\sqrt{1+7/x}}=-\frac72
\end{align}$$

Using WolframAlpha's step-by-step solution, however, gives this limit to be $-\infty$. Here's what it's doing
$$\begin{align}
\lim_{x\to-\infty}x-\sqrt{x^2+7x}&=\lim_{x\to-\infty}x-\lim_{x\to-\infty}\sqrt{x^2+7x}
\end{align}$$

where, by the power rule,
$$\begin{align}
\lim_{x\to-\infty}\sqrt{x^2+7x}&=\sqrt{\lim_{x\to-\infty}(x^2+7x)}\\
&=\sqrt{\lim_{x\to-\infty}x^2}\\
&=\sqrt{\left(\lim_{x\to-\infty}x \right)^2}=\infty
\end{align}$$

and so
$$
\lim_{x\to-\infty}x-\lim_{x\to-\infty}\sqrt{x^2+7x}=-\infty-\infty=-\infty
$$

What is wrong in this solution? I wondered if it was the power rule failing for undefined values of the square root, but not sure what to argue.

Best Answer

Your computation has an "absolute value" error.

One of your steps uses the equation $$\frac{\sqrt{x^2+7x}}{x} = \sqrt{\frac{x^2+7x}{x^2}} = \sqrt{1 + \frac{7}{x}} $$ However, this equation is only valid if $x > 0$, and you have applied it when $x < 0$ (as $x \to -\infty$).

In the case where $x < 0$, and therefore $x = - |x|$, what you could have done is this: $$\frac{\sqrt{x^2+7x}}{x} = -\frac{\sqrt{x^2+7x}}{|x|} = - \sqrt{\frac{x^2+7x}{x^2}} = - \sqrt{1 + \frac{7}{x}} $$ If you had done that, then your solution would have gone on to give a $0$ in the denominator, making the limit expression invalid.