Get $\int_0^∞\frac{dx}{(x^2+1)^n}=\frac{(2n-3)!!}{(2n-2)!!}\frac{\pi}{2}\overset{?}=\frac{\sqrt{\pi}}{2}\frac{Γ(n-\frac{1}{2})}{Γ(n)}$

calculusgamma functionimproper-integrals

I recently solved the following integral using a recursive formula and integration by parts.
$$\int_0^\infty\frac{dx}{(x^2+1)^n}=\frac{(2n-3)!!}{(2n-2)!!}\frac{\pi}{2}$$
Where $(n)!!$ represents the double factorial, not to be confused with $(n!)!$.

But when I plug this same integral into WolframAlpha I get this:
$$\int_0^\infty\frac{dx}{(x^2+1)^n}=\frac{\sqrt{\pi}}{2}\frac{\Gamma(n-\frac{1}{2})}{\Gamma(n)}$$
How do I prove that these two results are equivalent?

Best Answer

Recursion gives

$$\newcommand{\g}[1]{\Gamma \left( #1 \right)} \newcommand{\para}[1]{\left( #1 \right)} \begin{align*} \g{ n - \frac 1 2 } &= \para{ n -1 - \frac 1 2 }\cdot \g{(n-1) - \frac 1 2}\\ \g{ n - \frac 1 2 } &= \para{ n -1 - \frac 1 2 }\para{ n -2 - \frac 1 2 }\cdot \g{(n-2) - \frac 1 2}\\ &= \vdots \\ &=\para{ n -1 - \frac 1 2 }\para{ n -2 - \frac 1 2 }\cdot \cdots \cdot \para{ \frac 3 2 } \para{ \frac 1 2 }\cdot \g{ \frac 1 2 } \\ &=\para{ \frac{2n-3}{2} }\para{ \frac{2n-5}{2} }\para{ \frac{2n-7}{2} } \cdots\para{ \frac{1}{2} } \sqrt \pi \\ &= \frac{(2n-3)!!}{2^{n-1}} \sqrt \pi \end{align*}$$

Of course,

$$\g{n} = (n-1)!$$

Then their ratio is

$$\frac{\g{n-1/2}}{\g{n}} = \frac{\sqrt \pi}{2^{n-1}} \frac{(2n-3)!!}{(n-1)!}$$

By a property of the double factorial,

$$2^{n-1}(n-1)! = (2n-2)!!$$

so

$$\frac{\g{n-1/2}}{\g{n}} = \sqrt{\pi} \frac{(2n-3)!!}{(2n-2)!!}$$

The desired result follows.

Related Question