Generating function and binomial coefficients

binomial-coefficientsgenerating-functionsprobability distributions

I'm reading an article where the authors derive the mass function of a compound distribution by considering the generating function. The generating function of interest for a random variable $N$ is a composition of two generating functions $G_Y(s)$ and $G_X(s)$, where
\begin{equation}\tag{1}
G_N(s)=G_Y(G_X(s))=e^{\lambda\left(\frac{(1-\rho)s}{1-\rho s}-1\right)}=e^{-\lambda} \sum_{m=0}^{\infty} \frac{1}{m !}\left(\lambda(1-\rho) s\right)^m\left(1-\rho s\right)^{-m}
\end{equation}

They then state,

Now, expand the probability generating function of $N$ in (1) and then, collecting the coefficient of $s^n$, we find an explicit expression for the probability mass function of N as
$$
P(N=m)=e^{-\lambda} \sum_{i=0}^m \frac{1}{i !} {m-1\choose
i-1}[\lambda(1-\rho)]^i \rho^{m-i}.
$$

I don't see how this expression comes about from (1). I've tried using the negative binomial expansion identity of
$$
(1-\rho)^{-r}=\sum_{k=0}^{\infty} {{k+r-1} \choose k}\rho^k
$$

to substitute into (1), but I'm not getting anywhere. Any thoughts on what "expand the probability generating function" means or how to recover this PMF?

Best Answer

We use the coefficient of operator $[s^k]$ to denote the coefficient of $s^k$ in a series. This way we can write for instance \begin{align*} [s^k](1+s)^n=\binom{n}{k}\tag{1} \end{align*}

We obtain \begin{align*} \color{blue}{[s^m]}&\color{blue}{e^{-\lambda} \sum_{i=0}^{\infty} \frac{1}{i !}\left(\lambda(1-\rho) s\right)^i\left(1-\rho s\right)^{-i}}\\ &=e^{-\lambda} \sum_{i=0}^{m} \frac{1}{i !}\left(\lambda(1-\rho) \right)^i[s^{m-i}]\left(1-\rho s\right)^{-i}\tag{2}\\ &=e^{-\lambda} \sum_{i=0}^{m} \frac{1}{i !}\left(\lambda(1-\rho) \right)^i[s^{m-i}]\sum_{k\geq 0}\binom{-i}{k} (-\rho s)^k\tag{3}\\ &=e^{-\lambda} \sum_{i=0}^{m} \frac{1}{i !}\left(\lambda(1-\rho) \right)^i[s^{m-i}]\sum_{k\geq 0}\binom{i+k-1}{k} (\rho s)^k\tag{4}\\ &\,\,\color{blue}{=e^{-\lambda} \sum_{i=0}^{m} \frac{1}{i !}\left(\lambda(1-\rho) \right)^i\binom{m-1}{i-1} \rho^{m-i}}\tag{5}\\ \end{align*} and the claim follows.

Comment:

  • In (2) we use the linearity of the coefficient of operator and apply the rule $[s^{p-q}]A(s)=[s^p]s^qA(s)$. We also set the upper limit of the outer sum to $m$ since other indices do not contribute to $[s^m]$.

  • In (3) we make a binomial series expansion.

  • In (4) we apply the binomial identity $\binom{-p}{q}=\binom{p+q-1}{q}(-1)^q$.

  • in (5) we select the coefficient of $s^{m-i}$ according to (1) and use $\binom{p}{q}=\binom{p}{p-q}$.

Related Question