Generalized Mangoldt Lambda function

analytic-number-theorynumber theory

For positive integers $k$ define the generalized von Mangoldt functions
$\Lambda_k$ by the identity $\sum\limits_{d|n} \Lambda_k(d) = (\log n)^k$

(which for $k = 1$ reduces to the familiar identity for the ordinary von Mangoldt function $\Lambda(n)$)

Prove that $\Lambda_k(n)=0$ if $n$ has more that $k$ distinct prime factors ?

Best Answer

$$f_k(n,m)=\sum_{d|n} \mu(n/d) \log^k (md)$$ $$ = \sum_{d|n} \mu(n/d) \log^{k-1} (md)(\log(m)+\sum_{p^r|d}\log(p))$$ $$ = f_{k-1}(n,m)\log(m)+ \sum_{p^r |n} f_{k-1}(n/p^r, mp^r)\log(p)$$ And conclude by induction on $k$ starting with $f_1(n,m)=0$ whenever $n \ne p^r$