Gamma distribution proof

gamma distributionprobability distributions

Consider the pdf of of $Gamma(\alpha,\beta)$

\begin{align}
f(x;\alpha,\beta) & = \frac{ \beta^\alpha x^{\alpha-1} e^{-\beta x}}{\Gamma(\alpha)} \quad \text{ for } x > 0 \quad \alpha, \beta > 0, \\[6pt]
\end{align}

My goal is to show that
$$P(a \leq X_{\alpha,\beta} \leq b)=\frac{1}{\beta}\, (f_{X_{\alpha,\beta}}(a)-f_{X_{\alpha,\beta}}(b))+P(a < X_{\alpha-1,\beta} < b)$$

I am writing things out but not sure where to go from here:

$$P(a \leq X_{\alpha,\beta} \leq b)=F_{X_{\alpha,\beta}}(b)-F_{X_{\alpha,\beta}}(a)$$

Also know,

$$\Gamma(\alpha)= \int_{0}^{\infty} e^{-x} x^{\alpha-1} \, dx$$
$$\Gamma(\alpha)=(\alpha-1) \Gamma(\alpha-1)$$

Not sure where to go from here, any help is appreciated.

Best Answer

It is very very easy...just to be solved in a couple of passages.

Observe that

$$P(a\leq X_{\alpha, \beta} \leq b)= \int_{a}^{b}\underbrace{\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}}_{=f}\times \underbrace{e^{-x \beta} }_{=g'}dx=f\times g\Bigg]_a^b -\int_a^b f' \times g=$$

$$=\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}\cdot \frac{e^{-x\beta}}{-\beta}\Bigg]_a^b+\int_a^b \frac{\beta^{\alpha}(\alpha-1)}{\Gamma(\alpha)}x^{\alpha-2}\cdot \frac{e^{-x\beta}}{\beta}dx $$

Simplify the expression and get immediately your proof


EDIT: it results to me

$$\frac{1}{\beta}[f_{X_{\alpha,\beta}}(a)-f_{X_{\alpha,\beta}}(b) ]+P(a<X_{\alpha-1,\beta}<b)$$

Can it be a typo in the posted solution which shows $\beta$ instead of $\frac{1}{\beta}$?