$(\frac{a}{b})^4+(\frac{b}{c})^4+(\frac{c}{d})^4+(\frac{d}{e})^4+(\frac{e}{a})^4\ge\frac{b}{a}+\frac{c}{b}+\frac{d}{c}+\frac{e}{d}+\frac{a}{e}$

a.m.-g.m.-inequalityinequality

How exactly do I solve this problem? (Source: 1984 British Math Olympiad #3 part II)

\begin{equation*}
\bigl(\frac{a}{b}\bigr)^4 + \bigl(\frac{b}{c}\bigr)^4 + \bigl(\frac{c}{d}\bigr)^4 + \bigl(\frac{d}{e}\bigr)^4 + \bigl(\frac{e}{a}\bigr)^4 \ge \frac{b}{a} + \frac{c}{b} + \frac{d}{c} + \frac{e}{d} + \frac{a}{e}
\end{equation*}

There's not really a clear-cut way to use AM-GM on this problem. I've been thinking of maybe using the Power Mean Inequality, but I don't exactly see a way to do that. Maybe we could use harmonic mean for the RHS?

Best Answer

Applying the AM-GM $$LHS - \bigl(\frac{e}{a}\bigr)^4 = \bigl(\frac{a}{b}\bigr)^4 + \bigl(\frac{b}{c}\bigr)^4 + \bigl(\frac{c}{d}\bigr)^4 + \bigl(\frac{d}{e}\bigr)^4 \ge4 \cdot \frac{a}{b} \cdot \frac{b}{c} \cdot \frac{c}{d} \cdot\frac{d}{e} = 4\cdot\frac{a}{e} $$ Do the same thing for these 4 others terms, and make the sum $$5 LHS - LHS \ge 4 RHS$$ $$\Longleftrightarrow LHS \ge RHS$$ The equality occurs when $a=b=c=d=e$

Related Question