Fourier transform of $|x|^{-m}$ for $m\geq n$ in $\mathbb R^n$

fourier analysisfourier transform

According to this question the Fourier transform of $|x|^{-m}$ for $x\in\mathbb R^n$ and $0<m<n$ is given by

$$
\mathcal F[|x|^{-m}](\xi)=C(n,m)|\xi|^{m-n} \tag{1}
$$

for some constant depending on $m$ and $n$.

My question: How do you calculate the Fourier transform of $|x|^{-m}$ for $m\geq n$?

For $m\in\mathbb R^+\setminus\mathbb N$ the formula (1) should still hold by analytic continuation. How do we get the case $m\in\mathbb N_{\geq n}$?

Edit: Definition: Let $\mathcal F[f(x)](\xi)=(2\pi)^{-n/2}\int_{\mathbb R^n} f(x)\exp(ix\cdot\xi) dx$ be the Fourier transform of a Schwartz function $f$.

Best Answer

You can define $r_+^{-m}$ as $$(r_+^{-m}, \phi) = \int_0^\infty r^{-m} \left( \phi(r) - \sum_{k = 0}^{m - 2} \frac {\phi^{(k)}(0)} {k!} r^k - \frac {\phi^{(m - 1)}(0)} {(m - 1)!} r^{m - 1} H(1 - r) \right) dr$$ and then define $r^{-m}$ in $\mathbb R^n$ as the integral in spherical coordinates: $$(r^{-m}, \phi) = \left( r_+^{-m + n - 1}, \int_{\mathcal S_r} \phi dS \right),$$ where the inner integral is taken over the surface of an $(n - 1)$-sphere. Then the formula $$\mathcal F[r^\lambda] = \int_{\mathbb R^n} r^\lambda e^{i \boldsymbol x \cdot \boldsymbol \xi} d \boldsymbol x = \frac {2^{\lambda + n} \pi^{n/2} \Gamma \!\left( \frac {\lambda + n} 2 \right)} {\Gamma \!\left( -\frac \lambda 2 \right)} \rho^{-\lambda - n}$$ still holds for $\lambda = -n -2 k - 1$, while for $\lambda = -n - 2k$ the result will be the regular part of $\mathcal F[r^\lambda]$, which isn't a homogeneous function of $\rho$: $$\mathcal F[r^{-n - 2k}] = [(\lambda + n + 2k)^0] \mathcal F[r^\lambda] = \\ \frac {\pi^{n/2}} {\Gamma(k + 1) \Gamma \!\left( k + \frac n 2 \right)} \left( -\frac {\rho^2} 4 \right)^k \left( -\ln \frac {\rho^2} 4 + \psi \!\left( k + \frac n 2 \right) + \psi(k + 1) \right), \\ k \in \mathbb N^0.$$

Related Question