Fourier transform of $\frac{\sin x}{x}$ without contour integration

fourier analysisfourier transform

Find the Fourier transform of $$\frac{\sin x}{x}$$

I know that question was asked before here, here on M.SE, but those solutions use contour integration. Can I solve it without that? One possible solution may be,

Take

$$
\mathscr F\{f(x)\}=F(\omega)=\int_{-\infty}^\infty \frac{\sin x}{x}e^{-i\omega x}dx
$$

If we use Leibniz integral rule,

$$
\begin{align}
\frac{d}{d\omega}F(\omega)&=\int_{-\infty}^\infty \frac{\sin x}{x}\frac{\partial}{\partial \omega}e^{-i\omega x}dx\\
&=-i\int_{-\infty}^\infty \sin xe^{-i\omega x}dx\\
&=-i\int_{-\infty}^\infty\frac{e^{ix}-e^{-ix}}{2i}e^{-i\omega x}dx\\
&=-\frac12\int_{-\infty}^\infty(e^{ix}e^{-i\omega x}-e^{-ix}e^{-i\omega x})dx\\
&=-\frac12\underbrace{\int_{-\infty}^\infty e^{-(i\omega-i)x}-e^{-(i+i\omega)x}dx}_I
\end{align}
$$

But it seems the integral is problematic for their limit. Any help will be appreciated.

Best Answer

There is a much simpler way by using the Fourier inversion theorem!

Then the result just follows from the fact that $$ {\cal F}^{-1}(\mathbf 1_{[-1,1]})(x) = \frac{1}{2\pi}\int_{-1}^1 e^{i\,\omega\,x}\,\mathrm d \omega = \frac{e^{ix}-e^{-ix}}{2i\pi\,x} = \frac{\sin x}{\pi\,x}. $$ and so $$ {\cal F}\left(\frac{\sin x}{x}\right) = \pi\,{\cal F}\left(\frac{\sin x}{\pi\,x}\right) = \pi\,\mathbf 1_{[-1,1]}(\omega) $$


Let me add details if you are not familiar with the Fourier transform: the Fourier inversion theorem tells that you can find the function from its Fourier transform by writing $$ f(x) = \frac{1}{2\pi} \int_{\Bbb R} \widehat f(\omega) \, e^{i\omega\,x}\,\mathrm d \omega = \frac{1}{2\pi} \cal F\big(\hat f\big)(-x) $$ where $\widehat f = {\cal F}(f)$. Equivalently, it means that the inverse operation to the Fourier transform is given by $$ {\cal F}^{-1}(g)(x) = \frac{1}{2\pi} \int_{\Bbb R} g(\omega) \, e^{i\omega\,x}\,\mathrm d \omega = \frac{1}{2\pi} \cal F(g)(-x) $$

Related Question